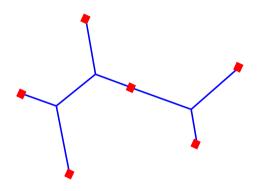
Euclidean Steiner Problem

Instance: n points x_1, \ldots, x_n in the plain.

Problem: Find a shortest network connecting all points x_i .



Important: Use of additional branching points is permitted!

(Otherwise: → MST-problem)

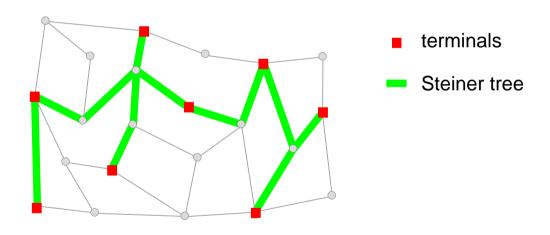
→ Named after Jakob Steiner (1796-1863).

Steiner Problem in Graphs

Instance: A graph G = (V, E) and a terminal set $K \subseteq V$.

Problem: A minimum Steiner tree for K; I.e., a connected subgraph T such that

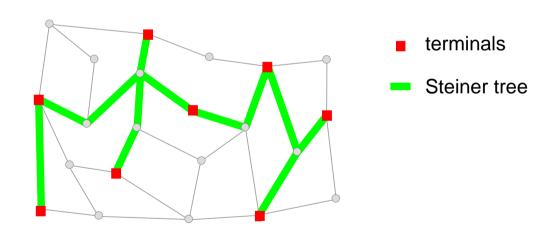
 $K\subseteq V(T) \text{ and } |E(T)| \stackrel{!}{=} \text{minimum}.$



Steiner Problem in Networks

Instance: A network (weighted graph) $N=(V,E,\ell)$ such that $\ell:E\to\mathbb{R}_{\geq 0}$ and a terminal set $K\subseteq V$.

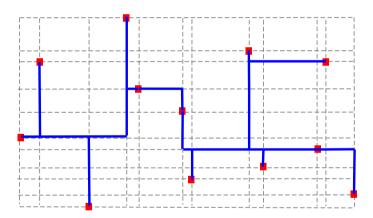
Problem: A minimum Steiner tree for K; I.e., a connected subgraph T such that $K\subseteq V(T)$ and $\ell(T)=\sum_{e\in E(T)}\ell(e)\stackrel{!}{=}$ minimum.



Manhattan Steiner Problem

Instance: n points x_1, \ldots, x_n in the plain.

Problem: Find a shortest (w.r.t. the L_1 -norm) network connecting all points x_i .



---> Equivalent to the Steiner Problem in (complete) grid graphs [Hanan '66]

Special Cases

 \longrightarrow Prim's algorithm: $\mathcal{O}(n \log n + m)$

Steiner Points

Exercise: A Steiner tree contains at most k-2 Steiner points.

Exercise: Computation of a minimum Steiner tree is easy if the set of Steiner points is known.

Corollary: A minimum Steiner tree can be found in $\mathcal{O}(n^k)$ time by complete enumeration of all sets of Steiner points.

Computational Complexity

Karp '72:

The SteinerProblemInNetworks is \mathcal{NP} -complete.

Garey, Johnson '77:

The ManhattanSteinerProblem is \mathcal{NP} -complete.

Garey, Graham, Johnson '77:

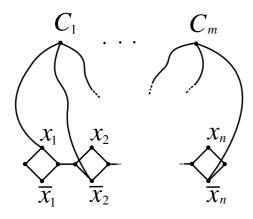
The EUCLIDEANSTEINER PROBLEM is \mathcal{NP} -hard.

Theorem:

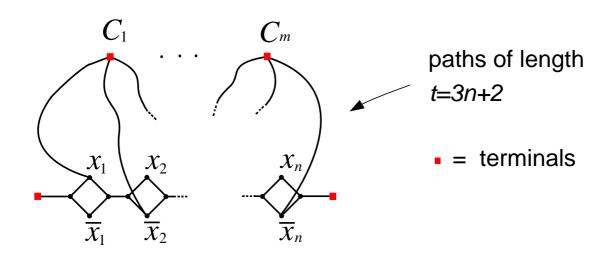
STEINERPROBLEMINPLANARGRAPHS is \mathcal{NP} -complete.

Proof [PrSt]: reduction from PLANAR3SAT.

Let I be a 3SAT instance with variables x_1,\ldots,x_n and clauses C_1,\ldots,C_m such that

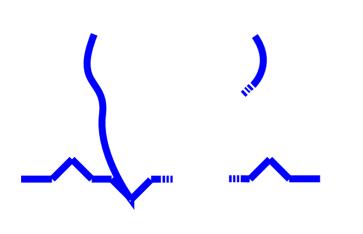


is planar. Consider G_I :

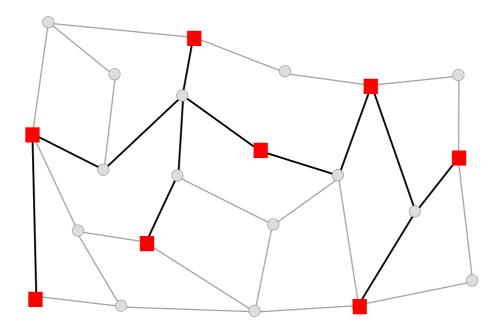


Then: 3SAT instance is satisfiable \iff

 G_I contains a Steiner tree of length $\leq 3n+1+mt$



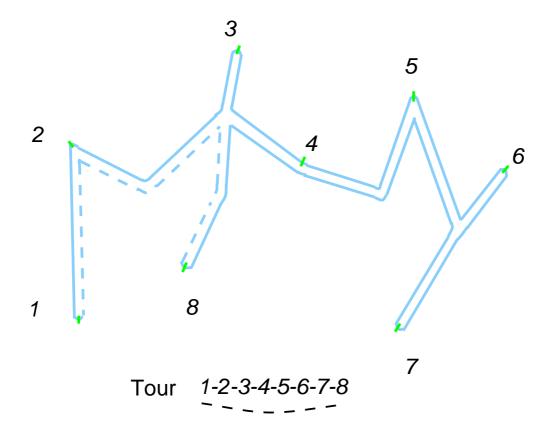
Approximation Ratio 2



- ullet Compute a minimum spanning tree in the distance network induced by K;
- Embed it in the original graph.

[Choukhmane '78, Kou, Markowsky, Berman '81, ...]

Running time: $\mathcal{O}(m + n \log n)$ [Mehlhorn '88]

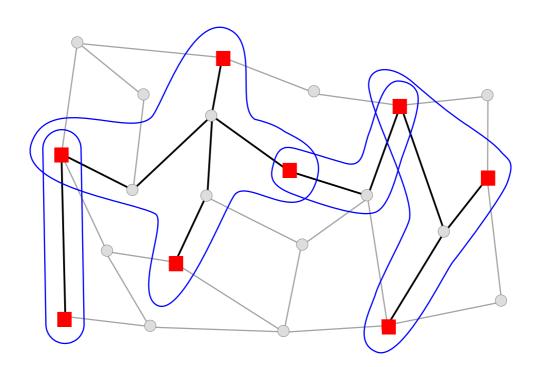


Approximation Ratios – Improvements

Idea: Compute

- not only shortest paths between any two terminals,
- but minimum Steiner trees for all subsets consisting of at most r terminals,

and find a minimum spanning tree in the corresponding hypergraph.



 \implies optimal solution for $r \geq 4$

Steiner Ratios

For all $r \geq 2$ let

$$H_r[N,K]$$
 := $(K,F_r;\ell_r)$ where
$$F_r := \{f\subseteq K\mid |f|\leq r\},$$

$$\ell_r(f) := smt(N,f) \text{ for all } f\in F_r$$

Fact: $H_r[N,K]$ computable in poly. time. (r constant)

Fact:
$$mst(H_r[N,K]) \geq smt(N,K)$$

Let
$$\rho_r := \inf\{a \mid a \geq \frac{mst(H_r[N,K])}{smt(N,K)} \, \forall \, N,K\}$$

Theorem:
$$\rho_2 = 2$$

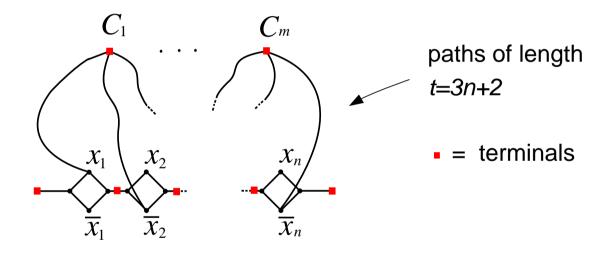
$$\rho_3 = \frac{5}{3}$$
 [Zelikovsky '93]

$$\rho_{2^s+r} = \frac{(s+1)2^s + r}{s^{2^s} + r}$$
 [Borchers, Du '95]

Corollary: $\rho_r \to 1$ for $r \to \infty$.

Bad News ...

Theorem: MST-problem for $H_r[N,K]$ is \mathcal{NP} -complete $\forall r \geq 4$.



[Fact: 3SAT remains \mathcal{NP} -complete if each literals occurs at most twice.]

Approximation Algorithms

MAIN IDEA: Compute a "good approximation" of a minimum spanning tree.

Zelikovsky's algorithm \mathcal{A}_r

Compute
$$H_r(N) = (K, F_r, \ell_r)$$
.

Compute
$$H_2(N) = (K, E_2, \ell_2)$$
.

$$i := 0$$
.

while $T_1 \cup \ldots \cup T_i$ is not a connected spanning subgraph of $H_r(N)$ do

begin

$$i := i + 1$$

Choose $T_i \in F_r$ that minimizes

$$f_{i-1}(T_i) := \frac{\ell_r(T_i)}{(mst_2(N;T_1,...,T_{i-1}) - mst_2(N;T_1,...,T_{i-1},T_i))};$$

end;

Compute from $T_1 \cup \ldots \cup T_i$ a Steiner tree T for K in N

State of the Art

Author	Ratio	Running time
Kou, Markowsky, Berman '81, u.a.	2	$\mathcal{O}(n\log n + m)$ [M88]
Zelikovsky '93	$\frac{11}{6} \approx 1.84$	$\mathcal{O}(n^3)$
Berman, Ramaiyer '94	$\frac{16}{9} \approx 1.78$	$\mathcal{O}(n^5)$
	$\rho_2 - \sum_i \frac{\rho_{i-1} - \rho_i}{i-1} \approx 1.734$	$n^k, k \to \infty$
Zelikovsky '95	$1 + \ln 2 \approx 1.69$	$n^k, k \to \infty$
Karpinski, Zelikovsky '95	1.644	$n^k, k o \infty$
Prömel, St. '97 *)	$\frac{5}{3} + \varepsilon \approx 1.667$	$\mathcal{O}(\frac{\log 1/\varepsilon}{\varepsilon} \cdot n^{14} \cdot \log n)$
Hougardy, Prömel '99	≈ 1.59	$n^k, k o \infty$
Robbins, Zelikovsky '00	$1 + \frac{\ln 3}{2} \approx 1.55$	$n^k, k \to \infty$

MST-Problem in 3-uniform Hypergraphs

(1) Unweighted

Lovász '78: $\mathcal{O}(n^{17})$

Gabow, Stallmann '86: $\mathcal{O}(n^4)$

Lovász '79 $\mathcal{O}(m \cdot n^4)$, randomized

(2) Weighted

Camerini, Galbiati, Maffioli '92: $\tilde{\mathcal{O}}(n^6 \cdot (w_{\text{max}})^2)$, randomized

Prömel, St. '97: $\mathcal{O}((\log n)^2)$ time,

 $\mathcal{O}(m \cdot n^{7.5} \cdot w_{\mathsf{max}})$ processors, randomized

approximation scheme: $\mathcal{O}((\log n)^2)$ time,

 $\mathcal{O}(\varepsilon^{-1} \cdot m^2 \cdot n^{8.5})$ processors, randomized

Detour: Pfaffians

Let $A=(a_{ij})$ be $2n \times 2n$ skew-symmetric matrix.

Let \mathcal{P} denote the set of all partitions of $\{1,\ldots,2n\}$ into two element sets.

For
$$p = \{\{i_1, i_2\}, \dots, \{i_{2n-1}, i_{2n}\}\} \in \mathcal{P}$$
 let

$$\sigma(p)$$
 := sign $\left(egin{array}{cccc} 1 & 2 & \cdots & 2n-1 & 2n \ i_1 & i_2 & \cdots & i_{2n-1} & i_{2n} \end{array}
ight),$

$$\rho(p) := \prod_{i=1}^{n} a_{i_{2j-1} i_{2j}}.$$

The pfaffian of A is defined as

$$\operatorname{pf}(A) \ := \ \sum_{p \in \mathcal{P}} \sigma(p) \cdot \rho(p)$$

$$\underline{\mathsf{Lemma}} \colon \det(A) = [\mathsf{pf}(A)]^2 \quad \mathsf{and} \quad$$

$$pf(BAB^T) = det(B) \cdot pf(A) \quad \forall B$$

Lemma [Lov79, CGM92]:

Let $m \geq n$ and $a_1, b_1, \ldots, a_m, b_m \in \mathbb{R}^{2n}$ and

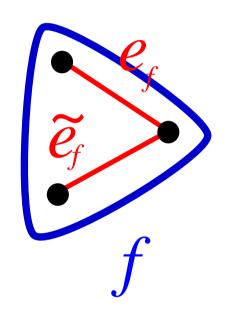
$$A := \sum_{i=1}^{m} x_i (a_i b_i^T - b_i a_i^T).$$

Then: A is a skew-symmetric $2n \times 2n$ matrix and

$$\mathsf{pf}(A) = \sum_{1 \le i_1 < \dots < i_n \le m} x_{i_1} \cdot \dots \cdot x_{i_n} \cdot \det(\underbrace{a_{i_1} | b_{i_1} \cdots | a_{i_n} | b_{i_n}}_{2n \times 2n}).$$

Back to the MST-Problem ...

Let H = (V, F) be a 3-uniform hypergraph on 2n + 1 vertices.



For each hyperedge $f \in F$ choose arbitrarily two edges $e_f, \tilde{e}_f \subseteq f$.

Fact: $\{f_1,\ldots,f_n\}\subseteq F$ is a spanning tree in H $\iff \{e_{f_1},\tilde{e}_{f_1},\ldots,e_{f_n},\tilde{e}_{f_n}\}$ is a spanning tree in G.

Define $a_f, b_f \in \mathbb{R}^{2n}$ as

$$(a_f)_i := \begin{cases} 1 & \text{if } i \in e_f, \\ 0 & \text{otherwise,} \end{cases} \qquad (b_f)_i := \begin{cases} 1 & \text{if } i \in \tilde{e}_f, \\ 0 & \text{otherwise.} \end{cases}$$

Let

$$A := \sum_{f \in F} 2^{w(f)} (a_f b_f^T - b_f a_f^T)$$

Observe:

$$\det(a_{i_1}|b_{i_1}\cdots|a_{i_n}|b_{i_n}) = \begin{cases} \pm 1 & \text{if } \{a_{i_1},b_{i_1},\cdots,a_{i_n},b_{i_n}\} \\ 0 & \text{otherwise,} \end{cases}$$
 is a spanning tree,

<u>Lemma</u>: Let H be a 3-uniform hypergraph on 2n+1 vertices and let $w:F\to\mathbb{N}_0$ be a weight function such that H contains a <u>unique</u> spanning tree T_0 of minimum weight, say w_0 . Then:

 $\det(A) \neq 0$ and 2^{2w_0} is the largest power of 2 that divides $\det(A)$.

In addition, for all $f \in F$ and $A_f = A - 2^{w(f)}(a_fb_f^T - b_fa_f^T)$:

$$f \in T_0 \qquad \Longleftrightarrow \qquad \frac{\det(A_f)}{2^{2w_0}} \quad \text{is even}.$$

Idea of the proof:

$$\det(A) \ = \ [\operatorname{pf}(A)]^2 \ = \ \left[\sum_T 2^{w(T)} \cdot \delta_T\right]^2, \qquad \text{ where } \ \delta_T \in \{-1, +1\}.$$

There exists a deterministic algorithm that solves the MST-problem – for hypergraphs with a unique minimum spanning tree.

Idea: → [Mulmuley, Vazirani, Vazirani '87]

Add to the weight of each edge a "small", randomly chosen ε_i . This changes the weight of the spanning trees only "a little", but with probability $\geq 1/2$ the minimum spanning tree is now unique!

Realization: Multiply the weight of each edge with $\Omega(n^4)$ and add a randomly chosen value of size $\mathcal{O}(n^3)$.

 \implies Algorithm consists essentially of |F|+1 many computations of determinants of $2n\times 2n$ matrices – with entries of (bit) size $\mathcal{O}(n^4\cdot w_{\sf max})$.

Approximation Scheme

ldea: → Scale ...!

- (1) Let $t:=\varepsilon\cdot w_{\max}/n$ and $w'(f)=\left\lceil\frac{w(f)}{t}\right\rceil$ for all $f\in F$. If T is a minimum spanning tree in H', then:
 - $w(T) \leq t \cdot w'(T) = t \cdot mst(H') \leq mst(H) + \frac{1}{2}tn = mst(H) + \frac{1}{2}\varepsilon w_{\text{max}}.$ [OK, if $mst(H) \geq w_{\text{max}}$, but that is not true in general.]
- (2) Let $w_1 < \ldots < w_s$ be the different weights in H. Set $F_i := \{f \in F \mid w(f) \leq w_i\}$ and $H_i = (V, F_i)$. Then there exists an i_0 such that $w_{i_0} \leq mst(H_{i_0}) = mst(H)$.
- \Longrightarrow Apply (1) in parallel to all H_i and return the smallest of all spanning tree.