Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institut für Theoretische Informatik

May 29, 2007

Lecturers: Bernd Gärtner, Uli Wagner, Emo Welzl

Assistant: Marek Sulovský

Approximate Methods in Geometry Spring 2007 Exercise Set 10

Course Webpage: http://www.ti.inf.ethz.ch/ew/courses/ApproxGeom07/

Due date: June 5, 2007

Exercise 1

Let $P \subseteq \mathbb{R}^d$, |P| = n. Prove the following statements about smallest enclosing balls and boxes:

(i) There exists $T \subseteq P, |T| \leq 2d$ such that

$$Q(P) = Q(T)$$
.

(ii) There exists $T \subseteq P, |T| \le d+1$ such that

$$B(P) = B(T)$$
.

Hint: For (ii) use HELLY's Theorem with balls of radius $R_P - \varepsilon$, and $\varepsilon > 0$, centered at the points in P.

Exercise 2

Prove that given a finite point set $P \subset \mathbb{R}^d$ and its optimal enclosing ball B(P) of radius R_P centered in c_P , the following holds:

Lemma. For any $c \in \mathbb{R}^d$, there exists a point $p \in P$ such that

1. $||p - c_P|| = R_P$ and

2.
$$||p-c||^2 \ge ||c-c_P||^2 + ||p-c_P||^2$$
,

Exercise 3

Show, that every ε -core set of smallest enclosing balls has size at least $\Omega(\frac{1}{\varepsilon})$.