Exercise 1
Let \(P := \{0, 1\}^d \). Given a \(v \in S_{d-1} \), calculate the width \(w_v(P) \) of \(P \) in the direction \(v \).

What is the smallest \(\epsilon \)-core set for the directional width of \(P \) (now in all directions at once - as it is defined in the lecture notes) for \(0 < \epsilon < \frac{1}{d} \)?

Exercise 2
Assume you are given a compact set \(K \subseteq \mathbb{R}^2 \) such that \(w_u(K) = w_v(K) \) for all directions \(u, v \in S_{d-1} \) (i.e. \(K \) has the same width in all directions). Does this automatically imply that \(\text{conv}(K) \) is a disk, or are there other possible shapes?

Exercise 3
The aspect ratio of a compact set \(K \) is defined as
\[
\frac{\max_{v \in S_{d-1}} w_v(K)}{\min_{v \in S_{d-1}} w_v(K)}.
\]

Prove that for any compact set \(K \) in \(\mathbb{R}^d \) for which \(\min_{v \in S_{d-1}} w_v(K) \neq 0 \), there is an affine transformation into set \(K' \) such that the aspect ratio of \(K' \) is bounded by \(d \).