Computational Geometry Exercise Set 10 WS06/07

Exercise 1 (10 points)

Let \(L \) be a set of \(n \) lines in \(\mathbb{R}^2 \) no three of which pass through a common point. Suppose that all lines from \(P \subseteq L \) are parallel to each other, no two lines from \(L \setminus P \) are parallel to each other, and no line from \(L \setminus P \) is parallel to those from \(P \). Determine the number of vertices, edges, and faces of the arrangement \(A(L) \) in terms of \(n \) and \(k := |P| \).

Exercise 2 (10 points)

For an arrangement \(A \) of a set of \(n \) lines in \(\mathbb{R}^2 \), let \(\mathcal{F} := \bigcup_{C \text{ cell of } A} \overline{C} \) denote the union of the closure of all bounded cells. Show that the complexity (number of vertices and edges) of \(\mathcal{F} \) is \(O(n) \).

Exercise 3 (10 points)

Given a set \(S \) of \(n \) line segments in \(\mathbb{R}^2 \). Describe a data structure for \(S \) to answer in \(O(\log n) \) time how many segments from \(S \) a given query line intersects. Storage should be \(O(n^2) \) and preprocessing time \(O(n^2 \log n) \).

Due date: January 22, 2007