Computational Geometry Exercise Set 2 WS06/07

URL: http://www.ti.inf.ethz.ch/ew/courses/CG06/

Exercise 1 (10 points)

We consider the mapping that assigns to a point \(p = (p_x, p_y) \in \mathbb{R}^2 \) the line \(p^* : y = p_x x - p_y \) and, vice versa, assigns to the line \(g : y = mx + b, m, b \in \mathbb{R} \) the point \(g^* = (m, -b) \).

1. Show that this mapping preserves incidences, i.e. for a point \(p \) and a line \(g \) it holds \(p \in g \iff g^* \in p^* \).

2. Show that this mapping preserves order, i.e. for a point \(p \) and a line \(g \) it holds: \(p \) is above \(g \iff g^* \) is above \(p^* \).

3. Describe the image of the following point sets under this mapping

 (a) a half plane
 (b) \(k \geq 3 \) colinear points
 (c) a line segment
 (d) the boundary points of the upper convex hull of a finite point set.

4. Consider the parabola \(\mathcal{P} : y = x^2/2 \). For \(p \in \mathcal{P} \) characterize \(p^* \) with respect to \(\mathcal{P} \).

Exercise 2 (10 points)

The lower envelope of a set \(G \) of non-vertical lines in \(\mathbb{R}^2 \) is defined to be the set of all points \(p \) such that

- \(p \) lies on (at least) one line in \(G \) and
- there is no line in \(G \), which is strictly below \(p \).

Describe an \(O(n \log n) \) algorithm which computes the lower envelope of a set of \(n \) non-vertical lines in \(\mathbb{R}^2 \).

Exercise 3 (10 points)

Consider a set \(M \subset \mathbb{R}^2 \) of \(n \) points. Describe an algorithm which decides in linear time if another point \(q \) lies in \(\text{conv}(M) \).
Exercise 4 (10 points)

For a sequence of \(n \) pairwise distinct numbers \(y_1, \ldots, y_n \) consider the sequence of pairs \((\min(y_1, \ldots, y_i), \max(y_1, \ldots, y_i))\) \(i = 0, 1, \ldots, n\) (\(\min \emptyset := +\infty, \max \emptyset := -\infty \)). How often do these pairs change in expectation if the sequence is permuted randomly, each permutation appearing with the same probability? Determine the expected value.

Due date: 13. November 2006, 13h15