Models of Computation

- 1. Real RAM
 - store and compute with (exact) real numbers;
 - all arithmetic operations constant time;
 - (integral) indirect addressing;
 - sometimes (square-)roots, logarithms, or other analytic functions;
 - sometimes floor and ceiling.

- 2. Algebraic Computation Trees
 - computation is a binary tree;
 - results are in the leaves;
 - interior node with one child: operation +,-,*,/,√·,... on two ancestors (or constants or input values);
 - interior node with two children: branch of the form $\geq 0, \leq 0, = 0$.

Hulls

Let $P \subset \mathbb{R}^d$, $n \in \mathbb{N}$, $p_i \in P$ and $\lambda_i \in \mathbb{R}$ for $i \in \{1, \ldots, n\}$.

Linear Hull

$$\operatorname{lin}(P) := \left\{ q \; \middle| \; q = \sum_{i=1}^{n} \lambda_i p_i \right\}$$

(Ex. $P = \{p\} \subset \mathbb{R}^2$: line through p and the origin.)

Affine Hull

$$aff(P) := \left\{ q \mid q = \sum_{i=1}^{n} \lambda_i p_i \wedge \sum_{i=1}^{n} \lambda_i = 1 \right\}$$

(Ex. $P = \{p,q\} \subset \mathbb{R}^2$: line through p and q.)

Convex Hull

 $\operatorname{conv}(P) :=$

$$\left\{ q \mid q = \sum_{i=1}^{n} \lambda_i p_i \wedge \sum_{i=1}^{n} \lambda_i = 1 \land \forall i : \lambda_i \ge 0 \right\}$$

(Ex. $P = \{p,q\} \subset \mathbb{R}^2$: line segment \overline{pq} through p and q.)

Convexity

Def. $P \subseteq \mathbb{R}^d$ is convex if and only if $\overline{pq} \subseteq P$ for any $p, q \in P$.

Obs. conv(P) is convex.

Let $p = \sum_{i=1}^{n} \lambda_i p_i$ and $q = \sum_{i=1}^{n} \mu_i p_i$, s.t. $\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} \mu_i = 1$ and $\lambda_i, \mu_i \ge 0$ for all $i \in \{1, \dots, n\}$.

For any $\alpha \in [0, 1]$

$$\alpha p + (1 - \alpha)q = \alpha \sum_{i=1}^{n} \lambda_i p_i + (1 - \alpha) \sum_{i=1}^{n} \mu_i p_i$$
$$= \sum_{i=1}^{n} (\alpha \lambda_i + (1 - \alpha) \mu_i) p_i,$$

where $\sum_{i=1}^{n} (\alpha \lambda_i + (1-\alpha)\mu_i) = \alpha + (1-\alpha) = 1$, $\alpha \lambda_i \ge 0$, and $(1-\alpha)\mu_i \ge 0$ for all $i \in \{1, \ldots, n\}$.

Characterization of Convexity

Thm. conv(P) is

- 1. the smallest convex subset of \mathbb{R}^d containing P.
- 2. the intersection of all convex supersets of P.
- 3. the intersection of all closed halfspaces containing P.

In particular: P finite \Rightarrow conv(P) is intersection of a finite number of halfspaces, that is, a convex polytope. [McMullen-Shephard 1971]

Thm. (Carathéodory) For $P \subset \mathbb{R}^d$ and $q \in \operatorname{conv}(P)$ there exist $k \leq d+1$ points $p_1, \ldots, p_k \in P$ such that $q \in \operatorname{conv}(p_1, \ldots, p_k)$.

Constructing Convex Hulls in R²

Convex Hull

Input: $P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2, n \in \mathbb{N}$. *Output:* sequence $(q_1, \ldots, q_h), 1 \leq h \leq n$, of vertices of conv(P) (oriented ccw).

Extremal Points

Input: $P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2, n \in \mathbb{N}$. *Output:* set $\{q_1, \ldots, q_h\}, 1 \leq h \leq n$, of vertices of conv(P).

What if three points in P are collinear?

Def. A point $p \in P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$ is *vertex* of conv(P) \iff there is a directed line g through p such that $P \setminus \{p\}$ is left of g.

Jarvis' Wrap

Find the point p_1 with smallest *x*-coordinate. "Wrap" *P* starting from p_1 ccw (Find the next point as the one from *P* that is furthest to the right.) Until p_1 is reached again.

Jarvis' Wrap — Implemented

p[0..N) contains a sequence of points.
p_start point with smallest x-coordinate.
q_next some other point in p[0..N).

```
int h = 0;
Point_2 q_now = p_start;
do {
    q[h] = q_now;
    h = h + 1;
for (int i = 0; i < N; i = i + 1)
    if (rightturn_2(q_now, q_next, p[i]))
        q_next = p[i];
    q_next = p[i];
}
```

q[0] q[1] ... q[h-1] describes a convex polygon bounding the convex hull of p[0..N).

Graham Scan (SLR)

Sort points lexicographically and remove duplicates: (p_1, \ldots, p_n) .

 $p_{10} p_4 p_1 p_3 p_2 p_5 p_9 p_7 p_6 p_7 p_9 p_5 p_2 p_3 p_1 p_4 p_{10}$

Lower Convex Hull:

As long as there is a (consecutive) triple (p, q, r)s.t. q is left of or on the directed line \overrightarrow{pr} , remove q from the sequence.

Successive Local Repair — Implemented

p[0..N) lexicographically sorted sequence of pairwise distinct points, $N \ge 2$.

```
q[0] = p[0];
int k = 0;
// Lower convex hull (left to right):
for (int i = 1; i < N; i = 1 + 1) {
  while (k>0 && rightturn_2(q[k-1], q[k], p[i]))
    k = k - 1;
 k = k + 1;
 q[k] = p[i];
}
// Upper convex hull (right to left):
for (int i = N-2; i \ge 0; i = i - 1) {
  while (rightturn_2(q[k-1], q[k], p[i]))
    k = k - 1;
  k = k + 1;
 q[k] = p[i];
}
```

q[0..h), h = k - 1, describes a convex polygon with vertices from p[0..N) as they are encountered on the boundary of the convex hull.

Chan's Algorithm — Divide

Input: $P \subset \mathbb{R}^2$ with |P| = n and a natural number $H \leq n$.

- 1. Divide P into $k = \lceil n/H \rceil$ sets P_1, \ldots, P_k with $|P_i| \le H$.
- 2. Construct conv(P_i) for all i, $1 \le i \le k$.
- 3. Construct *H* vertices of conv(P). (*con-quer*)

Chan's Algorithm — Conquer

- 1. Find the lexicographically smallest point in conv(P_i) for all i, $1 \le i \le k$.
- Starting from the lexicographically smallest point of P find the first H points of conv(P) oriented ccw (Jarvis' Wrap on the sequences conv(P_i)).

Determine in every step the points of tangency from the current point to of conv(P)to $conv(P_i)$, $1 \le i \le k$, using linear search.

