Models of Computation

1. Real RAM

- store and compute with (exact) real numbers;
- all arithmetic operations constant time;
- (integral) indirect addressing;
- sometimes (square-)roots, logarithms, or other analytic functions;
- sometimes floor and ceiling.

2. Algebraic Computation Trees

- computation is a binary tree;
- results are in the leaves;
- interior node with one child: operation $+,-, *, /, \sqrt{ } \cdot, \ldots$ on two ancestors (or constants or input values);
- interior node with two children: branch of the form $\geq 0, \leq 0,=0$.

Hulls

Let $P \subset{ }^{d}, n \in \quad, p_{i} \in P$ and $\lambda_{i} \in \quad$ for $i \in\{1, \ldots, n\}$.

Linear Hull

$$
\operatorname{lin}(P):=\left\{q \mid q=\sum_{i=1}^{n} \lambda_{i} p_{i}\right\}
$$

(Ex. $P=\{p\} \subset 2$: line through p and the origin.)

Affine Hull

$$
\operatorname{aff}(P):=\left\{q \mid q=\sum_{i=1}^{n} \lambda_{i} p_{i} \wedge \sum_{i=1}^{n} \lambda_{i}=1\right\}
$$

(Ex. $P=\{p, q\} \subset$ 2: line through p and q.)
Convex Hull
$\operatorname{conv}(P):=$

$$
\left\{q \mid q=\sum_{i=1}^{n} \lambda_{i} p_{i} \wedge \sum_{i=1}^{n} \lambda_{i}=1 \wedge \forall i: \lambda_{i} \geq 0\right\}
$$

(Ex. $P=\{p, q\} \subset \quad$ 2: line segment $\overline{p q}$ through p and q.)

Convexity

Def. $P \subseteq{ }^{d}$ is convex if and only if $\overline{p q} \subseteq P$ for any $p, q \in P$.

Obs. conv (P) is convex.

Let $p=\sum_{i=1}^{n} \lambda_{i} p_{i}$ and $q=\sum_{i=1}^{n} \mu_{i} p_{i}$, s.t. $\sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} \mu_{i}=1$ and $\lambda_{i}, \mu_{i} \geq 0$ for all $i \in\{1, \ldots, n\}$.

For any $\alpha \in[0,1]$

$$
\begin{aligned}
& \begin{aligned}
\alpha p+(1-\alpha) q & =\alpha \sum_{i=1}^{n} \lambda_{i} p_{i}+(1-\alpha) \sum_{i=1}^{n} \mu_{i} p_{i} \\
& =\sum_{i=1}^{n}\left(\alpha \lambda_{i}+(1-\alpha) \mu_{i}\right) p_{i},
\end{aligned} \\
& \text { where } \sum_{i=1}^{n}\left(\alpha \lambda_{i}+(1-\alpha) \mu_{i}\right)=\alpha+(1-\alpha)=1, \\
& \alpha \lambda_{i} \geq 0, \text { and }(1-\alpha) \mu_{i} \geq 0 \text { for all } i \in\{1, \ldots, n\} .
\end{aligned}
$$

Characterization of Convexity

Thm. $\operatorname{conv}(P)$ is

1. the smallest convex subset of ${ }^{d}$ containing P.
2. the intersection of all convex supersets of P.
3. the intersection of all closed halfspaces containing P.

In particular: P finite $\Rightarrow \operatorname{conv}(P)$ is intersection of a finite number of halfspaces, that is, a convex polytope. [McMullen-Shephard 1971]

Thm. (Carathéodory) For $P \subset{ }^{d}$ and $q \in$ $\operatorname{conv}(P)$ there exist $k \leq d+1$ points $p_{1}, \ldots, p_{k} \in$ P such that $q \in \operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)$.

Constructing Convex Hulls in 2

Convex Hull

Input: $P=\left\{p_{1}, \ldots, p_{n}\right\} \subset{ }^{2}, n \in$.
Output: sequence $\left(q_{1}, \ldots, q_{h}\right), 1 \leq h \leq n$, of vertices of conv(P) (oriented ccw).

Extremal Points

Input: $P=\left\{p_{1}, \ldots, p_{n}\right\} \subset{ }^{2}, n \in$.
Output: set $\left\{q_{1}, \ldots, q_{h}\right\}, 1 \leq h \leq n$, of vertices of $\operatorname{conv}(P)$.

What if three points in P are collinear?

Def. A point $p \in P=\left\{p_{1}, \ldots, p_{n}\right\} \subset 2$ is vertex of $\operatorname{conv}(P) \Longleftrightarrow$ there is a directed line g through p such that $P \backslash\{p\}$ is left of g.

Jarvis' Wrap

Find the point p_{1} with smallest x-coordinate. "Wrap" P starting from p_{1} ccw (Find the next point as the one from P that is furthest to the right.)
Until p_{1} is reached again.

Jarvis' Wrap - Implemented

$\mathrm{p}[0 . \mathrm{N}$) contains a sequence of points.
p_start point with smallest x-coordinate. q next some other point in $\mathrm{p}[0 . \mathrm{N}$).

$$
\begin{aligned}
& \text { int } \mathrm{h}=0 \text {; } \\
& \text { Point_2 q_now = p_start; } \\
& \text { do }\{ \\
& \text { q[h] = q_now; } \\
& \text { h = h + 1; } \\
& \text { for (int i = 0; i < N; i = i + 1) } \\
& \quad \text { if (rightturn_2(q_now, q_next, p[i])) } \\
& \quad \text { q_next = p[i]; } \\
& \text { q_now = q_next; } \\
& \text { q_next = p_start; } \\
& \text { \} while (q_now ! = p_start); } \\
& \quad \text { q[0] q[1] ... } \quad \text { q[h-1] } \\
& \text { describes a convex polygon bounding the con- } \\
& \text { vex hull of p[0..N). }
\end{aligned}
$$

Graham Scan (SLR)

Sort points lexicographically and remove duplicates: $\left(p_{1}, \ldots, p_{n}\right)$.

$p_{10} p_{4} p_{1} p_{3} p_{2} p_{5} p_{9} p_{7} p_{6} p_{7} p_{9} p_{5} p_{2} p_{3} p_{1} p_{4} p_{10}$

Lower Convex Hull:

As long as there is a (consecutive) triple (p, q, r) s.t. q is left of or on the directed line $\overrightarrow{p r}$, remove q from the sequence.

Successive Local Repair - Implemented

p[0..N) lexicographically sorted sequence of pairwise distinct points, $N \geq 2$.

```
\(\mathrm{q}[0]=\mathrm{p}[0]\);
int \(k=0 ;\)
// Lower convex hull (left to right):
for (int \(i=1\); \(i<N\); \(i=1+1\) ) \{
    while (k>0 \&\& rightturn_2(q[k-1], q[k], p[i]))
        \(\mathrm{k}=\mathrm{k}-1\);
    \(\mathrm{k}=\mathrm{k}+1\);
    \(\mathrm{q}[\mathrm{k}]=\mathrm{p}[\mathrm{i}] ;\)
\}
// Upper convex hull (right to left):
for (int \(i=N-2\); i >= 0 ; i \(=1-1\) ) \{
    while (rightturn_2(q[k-1], q[k], p[i]))
        k = k - 1;
    \(\mathrm{k}=\mathrm{k}+1\);
    \(\mathrm{q}[\mathrm{k}]=\mathrm{p}[\mathrm{i}] ;\)
\}
```

$\mathrm{q}[0 . \mathrm{h}), h=k-1$, describes a convex polygon with vertices from $\mathrm{p}[0 . \mathrm{N}$) as they are encountered on the boundary of the convex hull.

Chan's Algorithm - Divide

Input: $P \subset 2$ with $|P|=n$ and a natural number $H \leq n$.

1. Divide P into $k=\lceil n / H\rceil$ sets P_{1}, \ldots, P_{k} with $\left|P_{i}\right| \leq H$.
2. Construct conv $\left(\mathrm{P}_{\mathrm{i}}\right)$ for all $i, 1 \leq i \leq k$.
3. Construct H vertices of conv(P). (conquer)

Chan's Algorithm - Conquer

1. Find the lexicographically smallest point in $\operatorname{conv}\left(\mathrm{P}_{\mathrm{i}}\right)$ for all $i, 1 \leq i \leq k$.
2. Starting from the lexicographically smallest point of P find the first H points of conv (P) oriented ccw (Jarvis' Wrap on the sequences conv $\left.\left(P_{i}\right)\right)$.

Determine in every step the points of tangency from the current point to of conv(P) to $\operatorname{conv}\left(\mathrm{P}_{\mathrm{i}}\right), 1 \leq i \leq k$, using linear search.

