
Models of Computation

1. Real RAM

• store and compute with (exact) real

numbers;

• all arithmetic operations constant time;

• (integral) indirect addressing;

• sometimes (square-)roots, logarithms,

or other analytic functions;

• sometimes floor and ceiling.

2. Algebraic Computation Trees

• computation is a binary tree;

• results are in the leaves;

• interior node with one child: operation

+,−,∗,/,
√
·,. . . on two ancestors (or con-

stants or input values);

• interior node with two children: branch

of the form ≥ 0, ≤ 0, = 0.

≤ 0

a− b

b− ca− c

≤ 0 ≤ 0

a c b c

Hulls

Let P ⊂ Rd, n ∈ N, pi ∈ P and λi ∈ R for
i ∈ {1, . . . , n}.

Linear Hull

lin(P) :=

q

∣∣∣∣∣∣ q =
n∑

i=1

λipi

(Ex. P = {p} ⊂ R2: line through p and the
origin.)

Affine Hull

aff(P) :=

q

∣∣∣∣∣∣ q =
n∑

i=1

λipi ∧
n∑

i=1

λi = 1

(Ex. P = {p, q} ⊂ R2: line through p and q.)

Convex Hull

conv(P) :=q

∣∣∣∣∣∣ q =
n∑

i=1

λipi ∧
n∑

i=1

λi = 1 ∧ ∀ i : λi ≥ 0

(Ex. P = {p, q} ⊂ R2: line segment pq through
p and q.)

Convexity

Def. P ⊆ Rd is convex if and only if pq ⊆ P

for any p, q ∈ P .

Obs. conv(P) is convex.

Let p =
∑n

i=1 λipi and q =
∑n

i=1 µipi, s.t.∑n
i=1 λi =

∑n
i=1 µi = 1 and λi, µi ≥ 0 for all

i ∈ {1, . . . , n}.

For any α ∈ [0,1]

αp + (1− α)q = α
n∑

i=1

λipi + (1− α)
n∑

i=1

µipi

=
n∑

i=1

(αλi + (1− α)µi)pi ,

where
∑n

i=1(αλi+(1−α)µi) = α+(1−α) = 1,

αλi ≥ 0, and (1−α)µi ≥ 0 for all i ∈ {1, . . . , n}.

Characterization of Convexity

Thm. conv(P) is

1. the smallest convex subset of Rd contain-

ing P .

2. the intersection of all convex supersets of

P .

3. the intersection of all closed halfspaces

containing P .

In particular: P finite ⇒ conv(P) is intersec-

tion of a finite number of halfspaces, that

is, a convex polytope. [McMullen-Shephard

1971]

Thm. (Carathéodory) For P ⊂ Rd and q ∈
conv(P) there exist k ≤ d+1 points p1, . . . , pk ∈
P such that q ∈ conv(p1, . . . , pk).

Constructing Convex Hulls in R2

Convex Hull

Input: P = {p1, . . . , pn} ⊂ R2, n ∈ N.

Output: sequence (q1, . . . , qh), 1 ≤ h ≤ n, of

vertices of conv(P) (oriented ccw).

Extremal Points

Input: P = {p1, . . . , pn} ⊂ R2, n ∈ N.

Output: set {q1, . . . , qh}, 1 ≤ h ≤ n, of ver-

tices of conv(P).

What if three points in P are collinear?

Def. A point p ∈ P = {p1, . . . , pn} ⊂ R2 is

vertex of conv(P) ⇐⇒ there is a directed

line g through p such that P \ {p} is left of g.

Jarvis’ Wrap

Find the point p1 with smallest x-coordinate.

“Wrap” P starting from p1 ccw

(Find the next point as the one from P that

is furthest to the right.)

Until p1 is reached again.

C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
CO

A
A
A
A
A
A
A
A
A
A
A
A
A
A��

���
���

���
���

���
����

zjq[0]=q start

zj
q[1]

zj

zj

zjq next

zjq[2]=q now

zj
zj

Jarvis’ Wrap — Implemented

p[0..N) contains a sequence of points.

p start point with smallest x-coordinate.

q next some other point in p[0..N).

int h = 0;

Point_2 q_now = p_start;

do {

q[h] = q_now;

h = h + 1;

for (int i = 0; i < N; i = i + 1)

if (rightturn_2(q_now, q_next, p[i]))

q_next = p[i];

q_now = q_next;

q_next = p_start;

} while (q_now != p_start);

q[0] q[1] ... q[h-1]

describes a convex polygon bounding the con-

vex hull of p[0..N).

Graham Scan (SLR)

Sort points lexicographically and remove du-

plicates: (p1, . . . , pn).

A
A
A
A
A
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
A
A
A
A
A
A
A

C
C
C
C
C
C
C
C
C
C
C
C
C
C�

�
�
�
�
�
�

���
����

6
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
���

A
A
AAU

�

C
C
C
C
C
C
CW

�
�
���

����*

A
A
A
A
A
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��A

A
A
A
A
A
A

C
C
C
C
C
C
C
C
C
C
C
C
C
C�

�
�
�
�
�
�
�

���
���

?

A
A

A
A

A
A

AK

�
�

�
�

�
�

�
�

�
��

A
A

AAK

�

C
C
C
C
C
C
CO �

�
���

�
����

}mp10

}mp4

}mp1

}mp3

}mp2

}mp5

}mp9

}mp7

}mp6

p10 p4 p1 p3 p2 p5 p9 p7 p6 p7 p9 p5 p2 p3 p1 p4 p10

Lower Convex Hull:

As long as there is a (consecutive) triple (p, q, r)

s.t. q is left of or on the directed line −→pr, re-

move q from the sequence.

Successive Local Repair — Implemented

p[0..N) lexicographically sorted sequence of

pairwise distinct points, N ≥ 2.

q[0] = p[0];
int k = 0;
// Lower convex hull (left to right):
for (int i = 1; i < N; i = 1 + 1) {

while (k>0 && rightturn_2(q[k-1], q[k], p[i]))
k = k - 1;

k = k + 1;
q[k] = p[i];

}

// Upper convex hull (right to left):
for (int i = N-2; i >= 0; i = i - 1) {

while (rightturn_2(q[k-1], q[k], p[i]))
k = k - 1;

k = k + 1;
q[k] = p[i];

}

q[0..h), h = k − 1, describes a convex poly-

gon with vertices from p[0..N) as they are

encountered on the boundary of the convex

hull.

Chan’s Algorithm — Divide

Input: P ⊂ R2 with |P | = n and a natural

number H ≤ n.

1. Divide P into k = dn/He sets P1, . . . , Pk

with |Pi| ≤ H.

2. Construct conv(Pi) for all i, 1 ≤ i ≤ k.

3. Construct H vertices of conv(P). (con-

quer)

Chan’s Algorithm — Conquer

1. Find the lexicographically smallest point

in conv(Pi) for all i, 1 ≤ i ≤ k.

2. Starting from the lexicographically small-

est point of P find the first H points of

conv(P) oriented ccw (Jarvis’ Wrap on

the sequences conv(Pi)).

Determine in every step the points of tan-

gency from the current point to of conv(P)

to conv(Pi), 1 ≤ i ≤ k, using linear search.

