
Randomized Incremental

Construction (RIC)

Convex Hulls in Space, and an Abstract

Framework
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Convex Hull in 3-space

The convex hull of n points in IR3 is a convex

polytope in IR3.

The vertices and edges form a planar graph

with at most 3n − 6 edges and at most 2n − 4

facets (Euler formula).

Assumption: no four points are on a com-

mon plane ⇒ all facets of the convex hull are

triangles (assumption can be removed...)
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Convex Hull Computation in 3-space

• Input: P ⊆ IR3, |P | = n.

• Output: The planar graph of vertices, edges,

and facets of conv(P ) (suitably linked).

• algorithm works for any dimension d
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Randomized Incremental Construction

1. Compute convex hull of {p1, . . . , p4} → C4

2. Add points pr ∈ P \ {p1, . . . , p4} in random

order:

• find (and remove) all facets visible from

pr

• Connect pr with all its “horizon” ver-

tices → Cr

p

horizon of pr

r
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RIC – Analysis

Step r (adding pr): the number of new facets

is deg(pr, Cr).

Cr has at most 3r − 6 edges, so

∑

p∈{p5,...,pr}

deg(p, Cr) ≤ 2(3r − 6) < 6r.

Since pr is a random point in {p5, . . . , pr}, its

expected degree (and therefore the expected

number of facets created) is at most

1

r − 4

∑

p∈{p5,...,pr}

deg(p, Cr) ≈ 6.

⇒ Overall expected number of facets created

(removed) is bounded by ≈ 6n.
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Analysis visible facet management (I)

How to find the visible facets for pr?

• Maintain for all points p 6∈ Cr one visible

facet of Cr, r = 4, . . . , n − 1

• From this facet, find all visible facets (and

the horizon edges) in time proportional to

their number, using depth-first-search.

• in C4, visible facets for all points can be

found in O(n).

• if p ∈ P loses its visible facet from Cr−1 to

Cr, then either p ∈ Cr, or there exists a new

visible facet consisting of pr and a horizon

egde incident to a facet in Cr−1 that was

visible both from pr and p.
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Update of visible facet

p

p

r
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Analysis visible facet management (II)

To update p’s visible facet in step r, check
all (horizon edges of) facets visible both from
p and pr (depth-first search from old visible
facet). Throughout this is proportional to (one
plus)

Up :=
n∑

r=5

∑

∆∈Cr−1\Cr

[∆ visible from p]

≤
n∑

r=5

∑

∆∈Cr\Cr−1

[∆ visible from p]

• ∆ visible from p ⇔ (p,∆) a “conflict”

• expected time to update all visible facets is
proportional to (n plus) the expected num-
ber of conflicts that appear during the al-
gorithm.

What is this expected number??? Be patient!
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An abstract framework

• X a finite set (e.g. set of points P in

IR2, IR3)

• Π a set of configurations (e.g. oriented

triangles defined by three points of P )

Each configuration ∆ ∈ Π has a defining set

D(∆) ⊆ X

(e.g. the vertices of the triangle) and a conflict

set

K(∆) ⊆ X (“killers”)

(e.g. points from which the triangle is visible

– here we need orientation).
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Properties we need

• D(∆) ≤ d, for all ∆ ∈ Π

• D(∆) ∩ K(∆) = ∅, for all ∆ ∈ Π

• Only constantly many configurations have

the same defining set (technical condition)

Definitions

• (X,Π, D, K) is a configuration space of di-

mension d

• For R ⊆ X,

T (R) := {∆ ∈ Π | D(∆) ⊆ R, K(∆)∩R = ∅}

is the set of active configurations with re-

spect to R.
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Final Goal

Compute the active configurations w.r.t. X,

T (X) = {∆ ∈ Π | K(∆) = ∅}

(e.g. all facets of the convex hull (P in IR3))

Algorithm

• Randomized incremental: add elements of

X in random order, maintain

Tr := set of active configurations

w.r.t. first r elements {x1, . . . , xr}
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RIC – Analysis

The number of new configurations created in

adding element xr is equal to deg(xr,Tr), the

number of configurations in Tr that have xr in

its defining set. Because each configuration

has at most d defining elements, we have

∑

x∈{x1,...,xr}

deg(x,Tr) ≤ d|Tr|.

Since xr is random in {x1, . . . , xr}, its expected

degree is bounded by

1

r

∑

x∈{x1,...,xr}

deg(x,Tr) ≤
d

r
|T (R)|,

for any fixed R = {x1, . . . , xr}. Averaging over

R it follows that the expected number of new

configurations is bounded by

d

r
E(|Tr|)
︸ ︷︷ ︸

tr

.
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Expected number of conflicts

We want to count the overall number of con-

flicts (x,∆) that appear during the algorithms,

i.e.
n∑

r=1

∑

∆∈Tr\Tr−1

|K(∆)|.

The following are equal: the conflicts

• appearing in the step Tr−1 → Tr,

• involving some ∆ ∈ Tr with xr ∈ D(∆).

For fixed R = {x1, . . . , xr}, prob(x = xr) = 1/r

for x ∈ R, so the expected conflict number is

1

r

∑

x∈R

∑

∆∈T (R),x∈D(∆)

∑

y∈X\R

[y ∈ K(∆)]

≤
d

r

∑

y∈X\R

|{∆ ∈ T (R) | y ∈ K(∆)}|.
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An easy but crucial Lemma

Lemma.

|{∆ ∈ T (R) | y ∈ K(∆)}

=

|T (R)| − |T (R ∪ {y})| + deg(y,T (R ∪ {y})).

Proof. The configurations of T (R) not in con-

flict with y are exactly the configurations of

T (R∪{y}) that do not have y in their defining

set.
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Expected number of conflicts (II)

Kr: expected number of new conflicts when xr

is inserted. Kr is bounded by

1
(
n
r

)

∑

R⊆X,|R|=r

d

r

∑

y∈X\R

|{∆ ∈ T (R) | y ∈ K(∆)}|

which is

1
(
n
r

)

∑

R⊆X,|R|=r

d

r

∑

y∈X\R

|T (R)|

︸ ︷︷ ︸

k1

−

1
(
n
r

)

∑

R⊆X,|R|=r

d

r

∑

y∈X\R

|T (R ∪ {y})|

︸ ︷︷ ︸

k2

+

1
(
n
r

)

∑

R⊆X,|R|=r

d

r

∑

y∈X\R

deg(y,T (R ∪ {y}))

︸ ︷︷ ︸

k3

.
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Evaluating k1

k1 =
1

(
n
r

)

∑

R⊆X,|R|=r

d

r

∑

y∈X\R

|T (R)|

=
1

(
n
r

)

∑

R⊆X,|R|=r

|T (R)|
d

r

∑

y∈X\R

1

=
d

r
(n − r)tr.
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Evaluating k2

k2 =
1

(
n
r

)

∑

R⊆X,|R|=r

d

r

∑

y∈X\R

|T (R ∪ {y})|

=
1

(
n
r

)

∑

R′⊆X,|R′|=r+1

d

r

∑

y∈R′

|T (R′)|

=
1

(
n

r+1

)

∑

R′⊆X,|R′|=r+1

(
n

r+1

)

(
n
r

)
d

r
(r + 1)|T (R′)|

=
1

(
n

r+1

)

∑

R′⊆X,|R′|=r+1

d

r
(n − r)|T (R′)|

=
d

r
(n − r)tr+1

=
d

r + 1
(n − (r + 1))tr+1 +

dn

r(r + 1)
tr+1.
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Evaluating k3

k3 =
1

(
n
r

)

∑

R⊆X,|R|=r

d

r

∑

y∈X\R

deg(y,T (R ∪ {y}))

=
1

(
n
r

)

∑

R′⊆X,|R′|=r+1

d

r

∑

y∈R′

deg(y, T (R′))

≤
1

(
n
r

)

∑

R′⊆X,|R′|=r+1

d

r
d|T (R′)|

=
1

(
n

r+1

)

∑

R′⊆X,|R′|=r+1

(
n

r+1

)

(
n
r

)
d

r
d|T (R′)|

≤
1

(
n

r+1

)

∑

R′⊆X,|R′|=r+1

n − r

r + 1
·
d

r
d|T (R′)|

=
d2

r(r + 1)
(n − r)tr+1

=
d2n

r(r + 1)
tr+1 −

d2

r + 1
tr+1.
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Expected number of conflicts (III)

In step n, no conflict is created. Moreover,

k1(r + 1) cancels with the first term of k2(r),

and we get

n−1∑

r=1

Kr ≤
n−1∑

r=1

(k1 − k2 + k3)

≤ d(n − 1)t1 +

d(d − 1)n
n−1∑

r=1

tr+1

r(r + 1)
−

d2
n−1∑

r=1

tr+1

r + 1
.
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Example: Convex Hull in 3-space

• d = 3

• tr ≤ 2r − 4 = O(r)

•
∑n−1

r=1 Kr = O(n + nHn−1) ⇒ O(n logn).

Theorem: The convex hull of n points in 3-

space can be computed in expected time

O(n logn).
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Example: Convex Hull in d-space

• tr = O(rbd/2c)

•
∑n−1

r=1 Kr = O(nbd/2c)
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Example: Convex Hull in 2-space

• d = 2

• tr ≤ r = O(r)

•
∑n−1

r=1 Kr = O(n + nHn−1) ⇒ O(n logn).

If tr = o(r) ⇒ O(n). This happens for example

when the n points are chosen randomly from

the unit square or the unit disk.
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