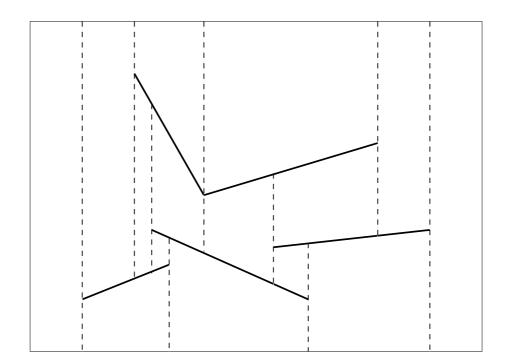
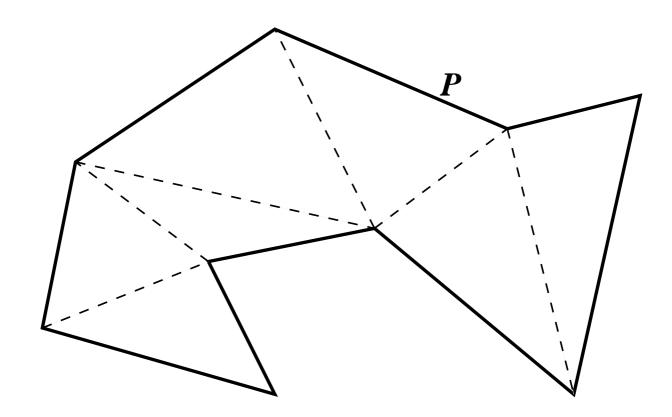
The trapezoidal map of non-crossing line segments



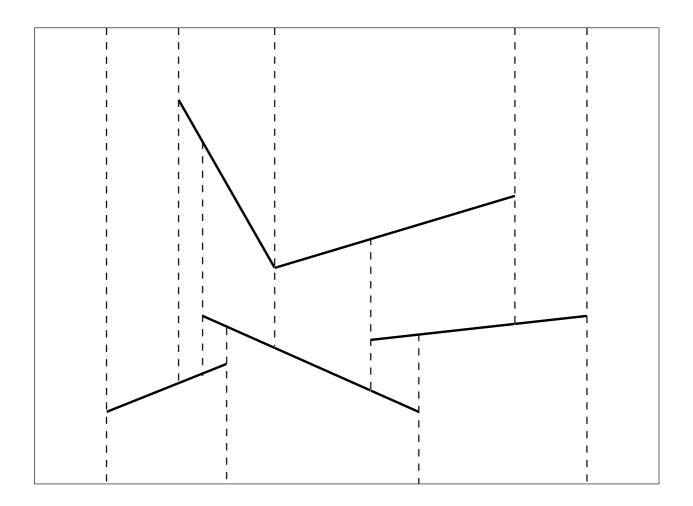
Problem: Polygon Triangulation

Given a simple polygon ${\cal P}$ with n edges, compute a triangulation of its interior.



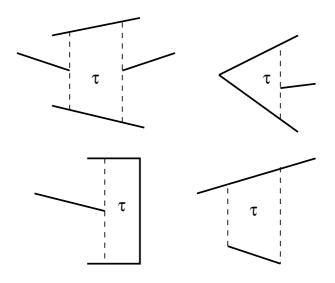
Solution via Trapezoidal Map

Given a set S of n nonintersecting segments in the plane, compute its $trapezoidal\ map$.



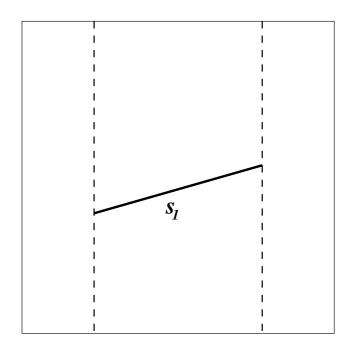
Trapezoidal Map

- \bullet planar graph, vertices V, edges E, faces F
- V: endpoints, artificial vertices
- E: pieces of segments, vertical extensions
- F: set of trapezoids, each one incident to at most 4 segments (assuming no two endpoints have the same x-coordinate; not true in triangulation application, but can be achieved even there)



Randomized Incremental Construction

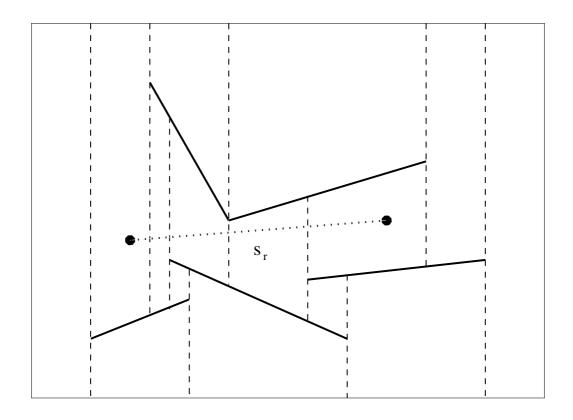
1. Compute trapezoidal map of $\{s_1\} \mapsto T_1$



2. Insert segments s_2, \ldots, s_n in random order $\mapsto T_n$

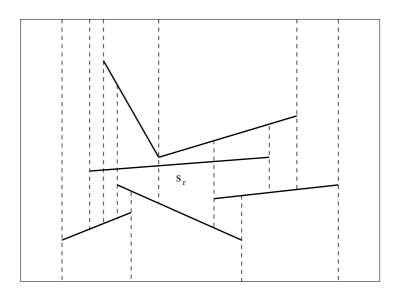
From T_{r-1} to T_r (I)

Find

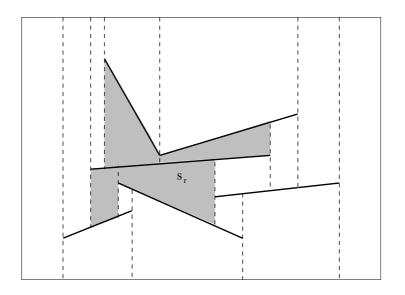


From T_{r-1} to T_r (II)

Split



Merge



From T_{r-1} to T_r (III)

- 1. **Find**: Find the trapezoid containing the left endpoint of s_r
- 2. **Split:** Trace s_r through T_{r-1} and split all the trapezoids intersected by s_r
- 3. **Merge:** Remove parts of vertical extensions "cut off" by s_r and merge the adjacent trapezoids

RIC - Analysis (I)

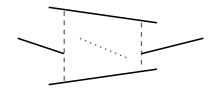
Apply configuration spaces!

- \bullet X: the set S of segments
- ullet Π : set of all trapezoids \square defined by segments of S
- $D(\Box)$: the (at most 4) segments incident to the trapezoid \Box
- $K(\square)$: the set of segments intersecting \square

RIC - Analysis (II)

Cost of step $T_{r-1} \mapsto T_r$:

- Find: we'll care for that later...
- **Split**: constant time per traced □; □ is replaced by at most 4 new trapezoids.



- \Rightarrow O(number of removed trapezoids)
- = O(number of created trapezoids)
- Merge: O(number of trapezoids created in step Split)

Analysis of Update $T_{r-1} \mapsto T_r$ (I)

Observation: The number of trapezoids created by **Split** is at most twice as large as the number of new trapezoids in T_r .

Proof: For every **Merge** operation above (below) s_r , one new trapezoid below (above) s_r survives. It follows that at most half of the previously created trapezoids are not in T_r .

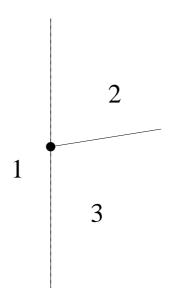
⇒ Complexity of **Split** and **Merge** is

$$O(|\{\Box \mid \Box \in T_r \setminus T_{r-1}\}|) = O(\deg(s_r, T_r)).$$

Analysis of Update $T_{r-1} \mapsto T_r$ (II)

Configuration Spaces \Rightarrow expected value of $deg(s_r, T_r)$ is $\leq \frac{4}{r}E(|T_r|)$.

• $|T_r| \le 6r$ (each \square is incident to a segment endpoint, and each endpoint is charged by at most three segments).



- Expected update cost $T_{r-1} \mapsto T_r$ is O(1)
- Overall expected update cost is O(n)

Realization of Find

- History approach: store all the trapezoids of $T_r, r = 1 \dots n$. $\square \in T_{r-1} \setminus T_r$ has pointers to all $\square' \in T_r \setminus T_{r-1}$ with $\square \cap \square' \neq \emptyset$
- At most 4 pointers per □
- Location of segment endpoint p_r of s_r : trace p_r through the history graph

Analysis of Find (I)

Assume p_r runs through a trapezoid \square different from the bounding box. Then there is $j \leq r$ such that \square is child of some \square' with

•
$$\Box' \in T_{j-1} \setminus T_j$$

- s_r intersects \square'
- \Rightarrow length of history path to p_r

$$\leq 1 + \sum_{j=1}^{r} \sum_{\square \in T_{j-1} \setminus T_j} [s_r \in K(\square)]$$

$$\leq 1 + \sum_{j=1}^{n-1} \sum_{\square \in T_j \setminus T_{j-1}} [s_r \in K(\square)]$$

 \Rightarrow expected time for history searches is proportional to (n plus) the expected number $\sum_{r=1}^{n-1} K_r$ of conflicts that appear during the algorithm.

Analysis of Find (II)

Configuration spaces ⇒

$$\sum_{r=1}^{n-1} K_r \leq \sum_{r=1}^{n-1} (k_1 - k_2 + k_3)$$

$$\leq d(n-1)t_1 +$$

$$d(d-1)n \sum_{r=1}^{n-1} \frac{t_{r+1}}{r(r+1)} -$$

$$d^2 \sum_{r=1}^{n-1} \frac{t_{r+1}}{r+1}$$

$$= O(n \log n),$$

because

$$t_{r+1} = E(|T_r|) = O(r+1).$$

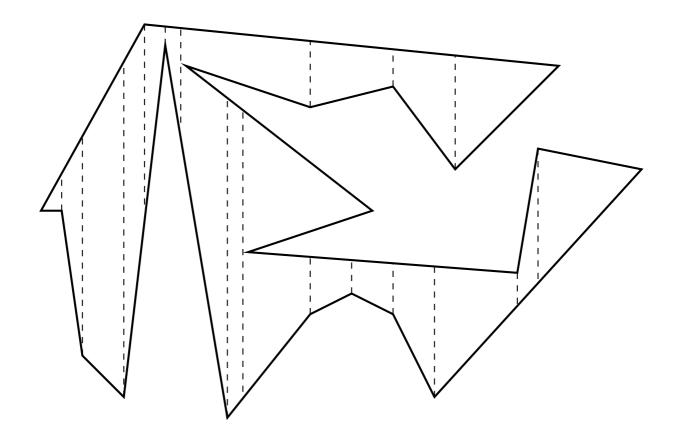
Trapezoidal Map - Conclusion

Given a set S of n nonintersecting segments in the plane, its trapezoidal map T(S) can be computed in time

$$O(n \log n)$$
.

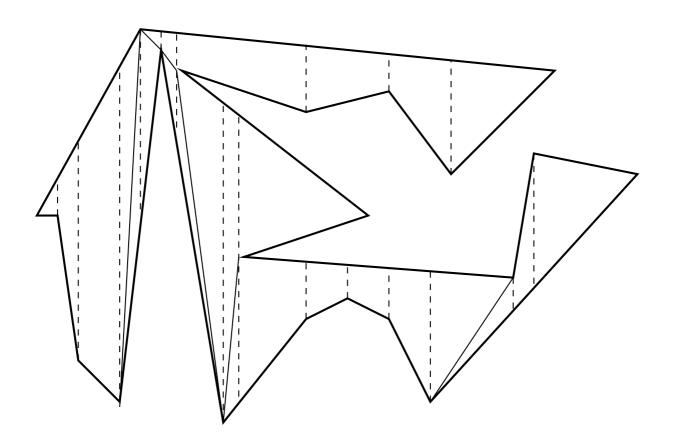
(The assumption that segment endpoints have different x-coordinates can be achieved by comparing them lexicographically.)

Special Case: S forms simple polygon P



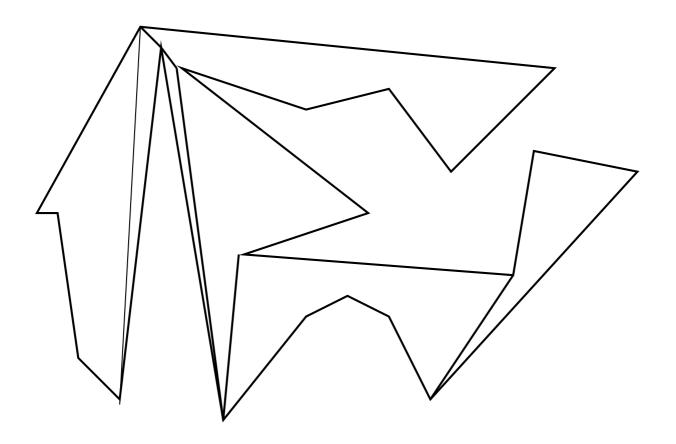
Trapezoidal Map → Triangulation (I)

Step 1: Within each trapezoid, connect the two polygon vertices



Trapezoidal Map → Triangulation (II)

Step 2: Triangulate the resulting x-monotone polygons separately, in total time O(n) (Exercise)



A fast method for the special case (I)

Runtime will be $O(n \log^* n)$.

•
$$\log^{(h)} n := \underbrace{\log \log \ldots \log n}_{h \text{ times}}$$

- $\log^* n := \max\{h \mid \log^{(h)} n \ge 1\}$
- Example: $\log^*(2^{65536}) = 5 \Rightarrow \log^* n < 5$ "for all" n.

Definition:

$$N(h) := \lceil \frac{n}{\log^{(h)} n} \rceil, \quad 0 \le h \le \log^{\star} n.$$

A fast method for the special case (II)

Generalized history management: keep several histories and for each $p \in P$ a pointer to the 'history in charge'.

Analysis of the fast method (I)

- **Split** and **Merge** proceed as before in expected time O(n)
- Find will be faster on average, but we have
- $\log^* n$ additional **Trace** steps

Analysis of Find (I)

In phase h, every trapezoid traced during the history search corresponds to a trapezoid that

- has been present in the beginning of phase
 h or was created during phase h
- ullet is in conflict with a segment inserted in phase h

 \Rightarrow expected cost of history search is at most proportional to $n + K_h$,

$$K_h := \sum_{r=N(h-1)+1}^{N(h)} \sum_{\square \in T_r \setminus T_{r-1}} |K(\square) \cap S_{N(h)}|.$$

Analysis of Find (II)

For fixed $X := S_{N(h)}$, $E(K_h)$ is the expected number of conflicts appearing in steps N(h-1)+1 to N(h) when T(X) is computed.

$$i := N(h-1) + 1, \quad j := N(h) - 1.$$

Configuration spaces analysis ⇒

$$E(K_h) \leq \sum_{r=i}^{j} (k_1 - k_2 + k_3)$$

$$\leq \frac{d(j+1-i)}{i} t_i + d(d-1)(j+1) \sum_{r=i}^{j} \frac{t_{r+1}}{r(r+1)} - d^2 \sum_{r=i}^{j} \frac{t_{r+1}}{r+1}.$$

Analysis of Find (III)

Recall:

$$t_{r+1} = O(r+1).$$

Then

$$E(K_h) = O(N(h) - N(h-1)) + O\left(N(h) \sum_{r=N(h-1)+1}^{N(h)-1} \frac{1}{r}\right)$$

$$= O\left(N(h) + N(h) \log \frac{N(h)}{N(h-1)}\right)$$

$$= O(N(h) + N(h) \log^{(h)} n$$

$$= O(n).$$

(This also holds for a random set $S_{N(h)}$ and for the last insertion phase $(i = N(\log^* n) + 1, j = n - 1)$.) The total cost for **Find** over all h is then $O(n \log^* n)$.

Analysis of Trace (I)

The expected cost T_h of tracing S through $T_{N(h)}$ is at most proportional to the expected number of conflicts between trapezoids in $T_{N(h)}$ and segments in S, which is

$$\frac{1}{\binom{n}{N(h)}} \sum_{R \subseteq S, |R| = N(h)} \sum_{y \in S \setminus R} |\{\Box \in T(R) \mid y \in K(\Box)\}|.$$

Up to a missing factor of d/N(h) this is exactly the bound for the expected number $K_{N(h)}$ of new conflicts when $s_{N(h)}$ is inserted that we derived from the *configuration spaces*.

Analysis of Trace (II)

	configuration spaces	here
k_1	$\frac{d}{r}(n-r)t_r$	$(n-r)t_r$
k_2	$\frac{d}{r}(n-r)t_{r+1}$	$(n-r)t_{r+1}$
k_3	$\frac{d^2}{r(r+1)}(n-r)t_{r+1}$	$\frac{d}{r+1}(n-r)t_{r+1}$

Setting r = N(h), we obtain $T_h = k_1 - k_2 + k_3$ as

$$T_{h} \leq (n - N(h))t_{N(h)} - (n - N(h))t_{N(h)+1} + \frac{d}{N(h)+1}(n - N(h))t_{N(h)+1}$$

$$= O\left(n(t_{N(h)} - t_{N(h)+1}) + n\right)$$

$$= O(n),$$

because $t_{N(h)} \leq t_{N(h)+1}$.

The total cost for **Trace** over all h is then $O(n \log^* n)$.

Fast Trapezoidal Map - Conclusion

Given a simple polygon P with n vertices in the plane, its trapezoidal map T(P) can be computed in time

$$O(n \log^* n)$$
.

(This is not optimal, because Chazelle has given a (rather complicated) O(n) algorithm for the problem.)