
The trapezoidal map of

non-crossing line segments
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Problem: Polygon Triangulation

Given a simple polygon P with n edges, com-

pute a triangulation of its interior.

P
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Solution via Trapezoidal Map

Given a set S of n nonintersecting segments in

the plane, compute its trapezoidal map.
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Trapezoidal Map

• planar graph, vertices V , edges E, faces F

• V : endpoints, artificial vertices

• E: pieces of segments, vertical extensions

• F : set of trapezoids, each one incident

to at most 4 segments (assuming no two

endpoints have the same x-coordinate; not

true in triangulation application, but can

be achieved even there)

τ
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Randomized Incremental Construction

1. Compute trapezoidal map of {s1} 7→ T1

s1

2. Insert segments s2, . . . , sn in random order

7→ Tn
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From Tr−1 to Tr (I)

Find

rs
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From Tr−1 to Tr (II)

Split

rs

Merge

rs
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From Tr−1 to Tr (III)

1. Find: Find the trapezoid containing the

left endpoint of sr

2. Split: Trace sr through Tr−1 and split all

the trapezoids intersected by sr

3. Merge: Remove parts of vertical exten-

sions “cut off” by sr and merge the adja-

cent trapezoids
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RIC – Analysis (I)

Apply configuration spaces!

• X: the set S of segments

• Π: set of all trapezoids 2 defined by seg-

ments of S

• D(2): the (at most 4) segments incident

to the trapezoid 2

• K(2): the set of segments intersecting 2
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RIC – Analysis (II)

Cost of step Tr−1 7→ Tr:

• Find: we’ll care for that later. . .

• Split: constant time per traced 2; 2 is

replaced by at most 4 new trapezoids.

⇒ O(number of removed trapezoids)

= O(number of created trapezoids)

• Merge: O(number of trapezoids created in

step Split)
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Analysis of Update Tr−1 7→ Tr (I)

Observation: The number of trapezoids cre-

ated by Split is at most twice as large as the

number of new trapezoids in Tr.

Proof: For every Merge operation above (be-

low) sr, one new trapezoid below (above) sr

survives. It follows that at most half of the

previously created trapezoids are not in Tr.

⇒ Complexity of Split and Merge is

O(|{2 | 2 ∈ Tr \ Tr−1}|) = O(deg(sr, Tr)).
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Analysis of Update Tr−1 7→ Tr (II)

Configuration Spaces ⇒ expected value of

deg(sr, Tr) is ≤ 4
rE(|Tr|).

• |Tr| ≤ 6r (each 2 is incident to a segment

endpoint, and each endpoint is charged by

at most three segments).

1

2

3

• Expected update cost Tr−1 7→ Tr is O(1)

• Overall expected update cost is O(n)
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Realization of Find

• History approach: store all the trapezoids

of Tr, r = 1 . . . n. 2 ∈ Tr−1 \ Tr has pointers

to all 2
′ ∈ Tr \ Tr−1 with 2 ∩ 2

′ 6= ∅

• At most 4 pointers per 2

• Location of segment endpoint pr of sr: trace

pr through the history graph
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Analysis of Find (I)

Assume pr runs through a trapezoid 2 different

from the bounding box. Then there is j ≤ r

such that 2 is child of some 2
′ with

• 2
′ ∈ Tj−1 \ Tj

• sr intersects 2
′

⇒ length of history path to pr

≤ 1 +
r∑

j=1

∑

2∈Tj−1\Tj

[sr ∈ K(2)]

≤ 1 +
n−1∑

j=1

∑

2∈Tj\Tj−1

[sr ∈ K(2)]

⇒ expected time for history searches is propor-

tional to (n plus) the expected number
∑n−1

r=1 Kr

of conflicts that appear during the algorithm.
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Analysis of Find (II)

Configuration spaces ⇒

n−1∑

r=1

Kr ≤
n−1∑

r=1

(k1 − k2 + k3)

≤ d(n − 1)t1 +

d(d − 1)n
n−1∑

r=1

tr+1

r(r + 1)
−

d2
n−1∑

r=1

tr+1

r + 1

= O(n logn),

because

tr+1 = E(|Tr|) = O(r + 1).

15

Trapezoidal Map – Conclusion

Given a set S of n nonintersecting segments

in the plane, its trapezoidal map T (S) can be

computed in time

O(n logn).

(The assumption that segment endpoints have

different x-coordinates can be achieved by com-

paring them lexicographically.)
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Special Case: S forms simple polygon P
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Trapezoidal Map → Triangulation (I)

Step 1: Within each trapezoid, connect the

two polygon vertices
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Trapezoidal Map → Triangulation (II)

Step 2: Triangulate the resulting x-monotone

polygons separately, in total time O(n) (Exer-

cise)

19

A fast method for the special case (I)

Runtime will be O(n log? n).

• log(h) n := log log . . . logn
︸ ︷︷ ︸

h times

• log? n := max{h | log(h) n ≥ 1}

• Example: log?(265536) = 5 ⇒ log? n < 5

“for all” n.

Definition:

N(h) := d
n

log(h) n
e, 0 ≤ h ≤ log? n.
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A fast method for the special case (II)

Generalized history management: keep several

histories and for each p ∈ P a pointer to the

‘history in charge’.

compute T1 and initialize one

history, in charge of all points

FOR h = 1 TO log? n DO

FOR r = N(h − 1) + 1 TO N(h) DO

compute Tr from Tr−1 (* as usual *)

END

(* Renew histories by tracing S through Tr *)

FOR ALL 2 ∈ Tr containing an endpoint DO

make 2 the root of a history in charge

of all the points it contains

END

END

FOR r = N(log? n) + 1 TO n DO

compute Tr from Tr−1 (* as usual *)

END
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Analysis of the fast method (I)

• Split and Merge proceed as before in ex-

pected time O(n)

• Find will be faster on average, but we have

• log? n additional Trace steps
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Analysis of Find (I)

In phase h, every trapezoid traced during the

history search corresponds to a trapezoid that

• has been present in the beginning of phase

h or was created during phase h

• is in conflict with a segment inserted in

phase h

⇒ expected cost of history search is at most

proportional to n + Kh,

Kh :=

N(h)
∑

r=N(h−1)+1

∑

2∈Tr\Tr−1

|K(2) ∩ SN(h)|.
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Analysis of Find (II)

For fixed X := SN(h), E(Kh) is the expected

number of conflicts appearing in steps N(h −

1) + 1 to N(h) when T (X) is computed.

i := N(h − 1) + 1, j := N(h) − 1.

Configuration spaces analysis ⇒

E(Kh) ≤
j
∑

r=i

(k1 − k2 + k3)

≤
d(j + 1 − i)

i
ti +

d(d − 1)(j + 1)
j
∑

r=i

tr+1

r(r + 1)
−

d2
j
∑

r=i

tr+1

r + 1
.
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Analysis of Find (III)

Recall:

tr+1 = O(r + 1).

Then

E(Kh) = O (N(h) − N(h − 1)) +

O




N(h)

N(h)−1
∑

r=N(h−1)+1

1

r






= O

(

N(h) + N(h) log
N(h)

N(h − 1)

)

= O
(

N(h) + N(h) log(h) n
)

= O(n).

(This also holds for a random set SN(h) and for

the last insertion phase (i = N(log? n)+1, j =

n − 1).) The total cost for Find over all h is

then O(n log? n).
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Analysis of Trace (I)

The expected cost Th of tracing S through

TN(h) is at most proportional to the expected

number of conflicts between trapezoids in TN(h)

and segments in S, which is

1
(

n
N(h)

)

∑

R⊆S,|R|=N(h)

∑

y∈S\R

|{2 ∈ T (R) | y ∈ K(2)}|.

Up to a missing factor of d/N(h) this is exactly

the bound for the expected number KN(h) of

new conflicts when sN(h) is inserted that we

derived from the configuration spaces.
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Analysis of Trace (II)

configuration spaces here

k1
d
r(n − r)tr (n − r)tr

k2
d
r(n − r)tr+1 (n − r)tr+1

k3
d2

r(r+1)
(n − r)tr+1

d
r+1(n − r)tr+1

Setting r = N(h), we obtain Th = k1 − k2 + k3

as

Th ≤ (n − N(h))tN(h) −

(n − N(h))tN(h)+1 +

d

N(h) + 1
(n − N(h))tN(h)+1

= O
(

n(tN(h) − tN(h)+1) + n
)

= O(n),

because tN(h) ≤ tN(h)+1.

The total cost for Trace over all h is then

O(n log? n).
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Fast Trapezoidal Map – Conclusion

Given a simple polygon P with n vertices in

the plane, its trapezoidal map T (P ) can be

computed in time

O(n log? n).

(This is not optimal, because Chazelle has given

a (rather complicated) O(n) algorithm for the

problem.)
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