
The trapezoidal map of

non-crossing line segments

1

Problem: Polygon Triangulation

Given a simple polygon P with n edges, com-

pute a triangulation of its interior.

P

2

Solution via Trapezoidal Map

Given a set S of n nonintersecting segments in

the plane, compute its trapezoidal map.

3

Trapezoidal Map

• planar graph, vertices V , edges E, faces F

• V : endpoints, artificial vertices

• E: pieces of segments, vertical extensions

• F : set of trapezoids, each one incident

to at most 4 segments (assuming no two

endpoints have the same x-coordinate; not

true in triangulation application, but can

be achieved even there)

τ

ττ

τ

4

Randomized Incremental Construction

1. Compute trapezoidal map of {s1} 7→ T1

s1

2. Insert segments s2, . . . , sn in random order

7→ Tn

5

From Tr−1 to Tr (I)

Find

rs

6

From Tr−1 to Tr (II)

Split

rs

Merge

rs

7

From Tr−1 to Tr (III)

1. Find: Find the trapezoid containing the

left endpoint of sr

2. Split: Trace sr through Tr−1 and split all

the trapezoids intersected by sr

3. Merge: Remove parts of vertical exten-

sions “cut off” by sr and merge the adja-

cent trapezoids

8

RIC – Analysis (I)

Apply configuration spaces!

• X: the set S of segments

• Π: set of all trapezoids 2 defined by seg-

ments of S

• D(2): the (at most 4) segments incident

to the trapezoid 2

• K(2): the set of segments intersecting 2

9

RIC – Analysis (II)

Cost of step Tr−1 7→ Tr:

• Find: we’ll care for that later. . .

• Split: constant time per traced 2; 2 is

replaced by at most 4 new trapezoids.

⇒ O(number of removed trapezoids)

= O(number of created trapezoids)

• Merge: O(number of trapezoids created in

step Split)

10

Analysis of Update Tr−1 7→ Tr (I)

Observation: The number of trapezoids cre-

ated by Split is at most twice as large as the

number of new trapezoids in Tr.

Proof: For every Merge operation above (be-

low) sr, one new trapezoid below (above) sr

survives. It follows that at most half of the

previously created trapezoids are not in Tr.

⇒ Complexity of Split and Merge is

O(|{2 | 2 ∈ Tr \ Tr−1}|) = O(deg(sr, Tr)).

11

Analysis of Update Tr−1 7→ Tr (II)

Configuration Spaces ⇒ expected value of

deg(sr, Tr) is ≤ 4
rE(|Tr|).

• |Tr| ≤ 6r (each 2 is incident to a segment

endpoint, and each endpoint is charged by

at most three segments).

1

2

3

• Expected update cost Tr−1 7→ Tr is O(1)

• Overall expected update cost is O(n)

12

Realization of Find

• History approach: store all the trapezoids

of Tr, r = 1 . . . n. 2 ∈ Tr−1 \ Tr has pointers

to all 2
′ ∈ Tr \ Tr−1 with 2 ∩ 2

′ 6= ∅

• At most 4 pointers per 2

• Location of segment endpoint pr of sr: trace

pr through the history graph

13

Analysis of Find (I)

Assume pr runs through a trapezoid 2 different

from the bounding box. Then there is j ≤ r

such that 2 is child of some 2
′ with

• 2
′ ∈ Tj−1 \ Tj

• sr intersects 2
′

⇒ length of history path to pr

≤ 1 +
r∑

j=1

∑

2∈Tj−1\Tj

[sr ∈ K(2)]

≤ 1 +
n−1∑

j=1

∑

2∈Tj\Tj−1

[sr ∈ K(2)]

⇒ expected time for history searches is propor-

tional to (n plus) the expected number
∑n−1

r=1 Kr

of conflicts that appear during the algorithm.

14

Analysis of Find (II)

Configuration spaces ⇒

n−1∑

r=1

Kr ≤
n−1∑

r=1

(k1 − k2 + k3)

≤ d(n − 1)t1 +

d(d − 1)n
n−1∑

r=1

tr+1

r(r + 1)
−

d2
n−1∑

r=1

tr+1

r + 1

= O(n logn),

because

tr+1 = E(|Tr|) = O(r + 1).

15

Trapezoidal Map – Conclusion

Given a set S of n nonintersecting segments

in the plane, its trapezoidal map T (S) can be

computed in time

O(n logn).

(The assumption that segment endpoints have

different x-coordinates can be achieved by com-

paring them lexicographically.)

16

Special Case: S forms simple polygon P

17

Trapezoidal Map → Triangulation (I)

Step 1: Within each trapezoid, connect the

two polygon vertices

18

Trapezoidal Map → Triangulation (II)

Step 2: Triangulate the resulting x-monotone

polygons separately, in total time O(n) (Exer-

cise)

19

A fast method for the special case (I)

Runtime will be O(n log? n).

• log(h) n := log log . . . logn
︸ ︷︷ ︸

h times

• log? n := max{h | log(h) n ≥ 1}

• Example: log?(265536) = 5 ⇒ log? n < 5

“for all” n.

Definition:

N(h) := d
n

log(h) n
e, 0 ≤ h ≤ log? n.

20

A fast method for the special case (II)

Generalized history management: keep several

histories and for each p ∈ P a pointer to the

‘history in charge’.

compute T1 and initialize one

history, in charge of all points

FOR h = 1 TO log? n DO

FOR r = N(h − 1) + 1 TO N(h) DO

compute Tr from Tr−1 (* as usual *)

END

(* Renew histories by tracing S through Tr *)

FOR ALL 2 ∈ Tr containing an endpoint DO

make 2 the root of a history in charge

of all the points it contains

END

END

FOR r = N(log? n) + 1 TO n DO

compute Tr from Tr−1 (* as usual *)

END

21

Analysis of the fast method (I)

• Split and Merge proceed as before in ex-

pected time O(n)

• Find will be faster on average, but we have

• log? n additional Trace steps

22

Analysis of Find (I)

In phase h, every trapezoid traced during the

history search corresponds to a trapezoid that

• has been present in the beginning of phase

h or was created during phase h

• is in conflict with a segment inserted in

phase h

⇒ expected cost of history search is at most

proportional to n + Kh,

Kh :=

N(h)
∑

r=N(h−1)+1

∑

2∈Tr\Tr−1

|K(2) ∩ SN(h)|.

23

Analysis of Find (II)

For fixed X := SN(h), E(Kh) is the expected

number of conflicts appearing in steps N(h −

1) + 1 to N(h) when T (X) is computed.

i := N(h − 1) + 1, j := N(h) − 1.

Configuration spaces analysis ⇒

E(Kh) ≤
j
∑

r=i

(k1 − k2 + k3)

≤
d(j + 1 − i)

i
ti +

d(d − 1)(j + 1)
j
∑

r=i

tr+1

r(r + 1)
−

d2
j
∑

r=i

tr+1

r + 1
.

24

Analysis of Find (III)

Recall:

tr+1 = O(r + 1).

Then

E(Kh) = O (N(h) − N(h − 1)) +

O




N(h)

N(h)−1
∑

r=N(h−1)+1

1

r






= O

(

N(h) + N(h) log
N(h)

N(h − 1)

)

= O
(

N(h) + N(h) log(h) n
)

= O(n).

(This also holds for a random set SN(h) and for

the last insertion phase (i = N(log? n)+1, j =

n − 1).) The total cost for Find over all h is

then O(n log? n).

25

Analysis of Trace (I)

The expected cost Th of tracing S through

TN(h) is at most proportional to the expected

number of conflicts between trapezoids in TN(h)

and segments in S, which is

1
(

n
N(h)

)

∑

R⊆S,|R|=N(h)

∑

y∈S\R

|{2 ∈ T (R) | y ∈ K(2)}|.

Up to a missing factor of d/N(h) this is exactly

the bound for the expected number KN(h) of

new conflicts when sN(h) is inserted that we

derived from the configuration spaces.

26

Analysis of Trace (II)

configuration spaces here

k1
d
r(n − r)tr (n − r)tr

k2
d
r(n − r)tr+1 (n − r)tr+1

k3
d2

r(r+1)
(n − r)tr+1

d
r+1(n − r)tr+1

Setting r = N(h), we obtain Th = k1 − k2 + k3

as

Th ≤ (n − N(h))tN(h) −

(n − N(h))tN(h)+1 +

d

N(h) + 1
(n − N(h))tN(h)+1

= O
(

n(tN(h) − tN(h)+1) + n
)

= O(n),

because tN(h) ≤ tN(h)+1.

The total cost for Trace over all h is then

O(n log? n).

27

Fast Trapezoidal Map – Conclusion

Given a simple polygon P with n vertices in

the plane, its trapezoidal map T (P) can be

computed in time

O(n log? n).

(This is not optimal, because Chazelle has given

a (rather complicated) O(n) algorithm for the

problem.)

28

