
Post Office Problem

Given: P ⊂ � 2, |P| = n.

Want: data structure to find the closest point

from P for any given q ∈ � 2.

Trivial:

• Query: O(n)

• Preprocessing: O(1)

• Space: O(1)

Goal:

• Query: O(logn)

• Preprocessing: O(n logn)

• Space: O(n)

Idea: Locus approach – Subdivide the domain

into regions on which the answer is the same.
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Voronoi Cells

Let P = {p1, . . . , pn} ⊂ � 2.

Definition 1 For pi ∈ P the Voronoi cell VP(i)

of pi with respect to P is

VP(i) :=
{

q ∈ � 2
∣

∣

∣ ||q − pi|| ≤ ||q − p|| ∀ p ∈ P
}

.

Observation 2

VP(i) =
⋂

j 6=i

H(pi, pj) , where

H(pi, pj) =
{

q ∈ � 2
∣

∣

∣ ||q − pi|| ≤ ||q − pj||
}

.

Observation 3 VP(i) 6= ∅ and VP(i) is convex.

Proof. pi ∈ VP(i) and VP(i) is an intersection

of a finite number of halfplanes. �

Observation 4 VP(i)∩VP(j) for i 6= j is either

empty or a line segment or a ray or a line.
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Definition 5 (Voronoi Diagram)

VD(P) is the subdivision of the plane induced

by the Voronoi polygons VP(i), i = 1, . . . , n.

Denote by VV(P) the set of vertices, by VE(P)

the edges and by VR(P) the regions (faces)

of VD(P).

From now on we assume P is in general po-

sition, that is,

• no three points are collinear and

• no four points are cocircular.
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Lemma 6 For every vertex v ∈ VV(P):

1. v is intersection of exactly three edges

from VE(P);

2. v is incident to exactly three regions from

VR(P);

3. v is midpoint of a circle C(v) through ex-

actly three points from P;

4. Int(C(v)) ∩ P = ∅.

Proof. Consider v ∈ VV(P).

Regions are convex ⇒ k ≥ 3 incident edges

e0, . . . , ek−1 ⊆ VE(P).

v

e2

ek−1

e0e1

V0

V1

V2

v ∈ ei ⇒ |v − pi| = |v − p(i+1)mod k|, that is,

p1, p2, . . . , pk−1 are cocircular.

4) If p` ∈ Int(C(v)) then v ∈ VP(`) but not in

VP(0), . . . VP(k − 1), a contradiction. �
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Voronoi Diagram and

Delaunay Triangulation

Lemma 7 The Voronoi edge between VP(i)

and VP(j) is unbounded ⇐⇒ pipj is an edge

of conv(P).

Theorem 8 (Delaunay 1934) For a finite

set P ⊂ � 2 of n ≥ 3 points in general position

the straight-line dual of VD(P) is DT(P).

(Straight-line dual: Graph G = (P, E);

pipj ∈ E ⇐⇒ |V(i) ∩ V(j)| > 1 ∧ i 6= j.)

Corollary 9 |VE(P)| ≤ 3 n − 6, |VV(P)| ≤ 2 n −

5, and VD(P) can be constructed in O(n logn)

time.
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Voronoi Diagram and

Delaunay Triangulation

Proof. (of Theorem 8)

Consider v ∈ VV(P).

By Lemma 6 v is incident to 3 regions VP(iv),

VP(jv) and VP(kv). Let T(v) := 4pivpjvpkv
.

Claim:

T (P) := {T(v) | v ∈ VV(P)}

is a triangulation of P.

(Delaunay property follows from Lemma 6d.)

1. If two triangles from T (P) intersect, they

intersect in a common edge.

2. Every point from CH(P) is contained in

at least one triangle from T (P).

�
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Lifting Map revisited

Definition 10 Let

U =
{

(x, y, z) ∈ � 3
∣

∣

∣ z = x2 + y2
}

.

The map u :
� 2 → U, u : (x, y) 7→ (x, y, x2 + y2)

is called lifting map onto the unit paraboloid.

For p ∈ � 2 let Hp the plane tangent to U in

u(p), and hp :
� 3 → Hp the projection of the

x/y-plane onto Hp along the z-axis.

Lemma 11

||u(q) − hp(q)|| = ||p − q||2, for any p, q ∈ � 2.

→ Exercise

Theorem 12

Let H(P) :=
⋂

p∈P H+
p , where H+

p is the closed

halfspace above Hp. The orthogonal projec-

tion of H(P) onto the x/y-plane is VD(P).
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Point Location

Theorem 13 (Kirkpatrick 1983) Let T be

any triangulation of a set P ⊂ � 2 of n ≥ 3

points. Then in O(n) time and using O(n)

space one can construct a data structure that

finds in O(logn) time for any query point q ∈
conv(P) the triangle from T containing q.

Corollary 14 (Nearest Neighbor Search)

For any set P ⊂ � 2 of n points one can con-

struct in

O(n logn) preprocessing time and

using O(n) space

a data structure that finds in

O(logn) query time

for any query point q ∈ conv(P) the points

closest to q among the points from P.
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Kirkpatrick’s Hierarchy

Plan: Construct a hierarchy T0,. . . ,Th of tri-

angulations, such that

1. V(Ti) ⊂ V(Ti−1), i = 1, . . . , h;

2. T0 = T ;

3. Th is a single triangle.

Search(x ∈ � 2)

1. For i = h . . . 0: Find the triangle ti of Ti

that contains x.

2. return t0.

To make the search efficient, we need

(C1) Every triangle in Ti intersects few (at

most c) triangles of Ti−1.

(C2) h is small (≤ d logn).

Proposition 15 The search needs at most

3cd logn = O(logn) orientation tests.
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Thinning a triangulation

Observation 16 Removing a vertex v and

all incident edges from a triangulation lea-

ves a polygonal hole that is star-shaped (all

points visible from v).

Lemma 17 A star-shaped polygon, given as

a sequences of n vertices, can be triangulated

in O(n) time. → Exercise.

Idea: Obtain Ti from Ti−1 by removing a set

I of independent vertices and re-triangulate.

The vertices in I should

a) have small degree (otw re-triangulation

is too expensive) and

b) there should be many (otw the hierarchy

gets too high).
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Lemma 18 In any triangulation of n ≥ 3

points in
� 2 one can find in O(n) time an

independent set of ≥ n/18 vertices of degree

≤ 8.

Proof. (of Theorem 13)

Construct T0, . . . Th with T0 = T . Obtain Ti

from Ti−1 by removing an independent set

U and re-triangulate the resulting holes.

Lemma 17 and Lemma 18: every step is li-

near in |V(Ti)|. In total

h∑

i=0

α|V(Ti)| ≤
h∑

i=0

αn(17/18)i < 18αn = O(n),

for some α > 0.

Similarly for space, as any triangle in Ti is

linked to at most 8 triangles from Ti+1.

h = log18/17 n < 12.2 logn.

By Proposition 15 the search needs at most

3 · 8 · log18/17 n < 292 logn orientation tests. �
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Improvements

The constant 292 in the search time is not

optimal.

• Sarnak, Tarjan (1986): 4 logn.

• Edelsbrunner, Guibas, Stolfi (1986): 3 logn.

• Goodrich, Orletsky, Ramaier (1997): 2 logn.

• Adamy, Seidel (2000): 1 logn + 2
√

logn.
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