Post Office Problem

Given: $\mathrm{P} \subset \mathbb{R}^{2},|\mathrm{P}|=\mathrm{n}$.

Want: data structure to find the closest point from P for any given $q \in \mathbb{R}^{2}$.

Trivial:

- Query: $\mathcal{O}(n)$
- Preprocessing: $\mathcal{O}(1)$
- Space: $\mathcal{O}(1)$

Goal:

- Query: $\mathcal{O}(\log n)$
- Preprocessing: $\mathcal{O}(n \log n)$
- Space: $\mathcal{O}(\mathrm{n})$

Idea: Locus approach - Subdivide the domain into regions on which the answer is the same.

Voronoi Cells

Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{2}$.
Definition 1 For $p_{i} \in P$ the Voronoi cell $V_{P}(i)$ of p_{i} with respect to P is

$$
V_{P}(i):=\left\{q \in \mathbb{R}^{2} \mid\left\|q-p_{i}\right\| \leq\|q-p\| \forall p \in P\right\}
$$

Observation 2

$$
V_{P}(i)=\bigcap_{i \neq j} H\left(p_{i}, p_{j}\right), \text { where }
$$

$$
H\left(p_{i}, p_{j}\right)=\left\{q \in \mathbb{R}^{2} \mid\left\|q-p_{i}\right\| \leq\left\|q-p_{j}\right\|\right\}
$$

Observation $3 V_{P}(i) \neq \emptyset$ and $V_{P}(i)$ is convex. Proof. $p_{i} \in V_{P}(i)$ and $V_{p}(i)$ is an intersection of a finite number of halfplanes.

Observation $4 V_{P}(i) \cap V_{P}(j)$ for $i \neq j$ is either empty or a line segment or a ray or a line.

Definition 5 (Voronoi Diagram)

$\mathrm{VD}(\mathrm{P})$ is the subdivision of the plane induced by the Voronoi polygons $V_{P}(i), i=1, \ldots, n$.

Denote by V (P) the set of vertices, by $\mathrm{VE}(\mathrm{P})$ the edges and by $\mathrm{VR}(\mathrm{P})$ the regions (faces) of $\mathrm{VD}(\mathrm{P})$.

From now on we assume P is in general position, that is,

- no three points are collinear and
- no four points are cocircular.

Lemma 6 For every vertex $v \in \mathrm{~V}(\mathrm{P})$:

1. v is intersection of exactly three edges from VE(P);
2. v is incident to exactly three regions from $\mathrm{VR}(\mathrm{P})$;
3. v is midpoint of a circle $C(v)$ through exactly three points from P ;
4. $\operatorname{Int}(C(v)) \cap P=\emptyset$.

Proof. Consider $v \in \mathrm{VV}(\mathrm{P})$.
Regions are convex $\Rightarrow k \geq 3$ incident edges $e_{0}, \ldots, e_{k-1} \subseteq \operatorname{VE}(P)$.

$v \in e_{i} \Rightarrow\left|v-p_{i}\right|=\left|v-p_{(i+1) \operatorname{modk}}\right|$, that is, $p_{1}, p_{2}, \ldots, p_{k-1}$ are cocircular.
4) If $p_{\ell} \in \operatorname{Int}(C(v))$ then $v \in V_{P}(\ell)$ but not in $V_{P}(0), \ldots V_{P}(k-1)$, a contradiction.

Voronoi Diagram and
 Delaunay Triangulation

Lemma 7 The Voronoi edge between $\mathrm{V}_{\mathrm{p}}(\mathrm{i})$ and $V_{P}(\mathfrak{j})$ is unbounded $\Longleftrightarrow \overline{p_{i} p_{j}}$ is an edge of conv(P).

Theorem 8 (Delaunay 1934) For a finite set $P \subset \mathbb{R}^{2}$ of $n \geq 3$ points in general position the straight-line dual of $\mathrm{VD}(\mathrm{P})$ is $\mathrm{DT}(\mathrm{P})$.
(Straight-line dual: Graph $\mathrm{G}=(\mathrm{P}, \mathrm{E})$;

$$
\left.\overline{\mathfrak{p}_{i} p_{j}} \in \mathrm{E} \Longleftrightarrow|\mathrm{~V}(\mathrm{i}) \cap \mathrm{V}(\mathrm{j})|>1 \wedge \mathrm{i} \neq \mathrm{j} .\right)
$$

Corollary $9|\operatorname{VE}(P)| \leq 3 n-6,|V V(P)| \leq 2 n-$ 5 , and $\mathrm{VD}(\mathrm{P})$ can be constructed in $\mathcal{O}(\mathrm{n} \log \mathrm{n})$ time.

Voronoi Diagram and
 Delaunay Triangulation

Proof. (of Theorem 8)
Consider $v \in \mathrm{VV}(\mathrm{P})$.
By Lemma $6 v$ is incident to 3 regions $V_{P}\left(i_{v}\right)$,
$V_{P}\left(j_{v}\right)$ and $V_{P}\left(k_{v}\right)$. Let $T(v):=\Delta p_{\mathfrak{i}_{v}} p_{j_{v}} p_{k_{v}}$.

Claim:

$$
\mathcal{T}(\mathrm{P}):=\{\mathrm{T}(v) \mid v \in \mathrm{~V}(\mathrm{P})\}
$$

is a triangulation of P.
(Delaunay property follows from Lemma 6d.)

1. If two triangles from $\mathcal{T}(P)$ intersect, they intersect in a common edge.
2. Every point from $\mathrm{CH}(\mathrm{P})$ is contained in at least one triangle from $\mathcal{T}(\mathrm{P})$.

Lifting Map revisited

Definition 10 Let

$$
\mathcal{U}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=x^{2}+y^{2}\right\} .
$$

The map $u: \mathbb{R}^{2} \rightarrow \mathcal{U}, u:(x, y) \mapsto\left(x, y, x^{2}+y^{2}\right)$ is called lifting map onto the unit paraboloid.

For $p \in \mathbb{R}^{2}$ let H_{p} the plane tangent to \mathcal{U} in $u(p)$, and $h_{p}: \mathbb{R}^{3} \rightarrow H_{p}$ the projection of the x / y-plane onto H_{p} along the z-axis.

Lemma 11

$$
\left\|\mathfrak{u}(q)-h_{p}(q)\right\|=\|p-q\|^{2}, \text { for any } \underset{\rightarrow}{p, q \in \mathbb{R}^{2} .}
$$

Theorem 12

Let $\mathcal{H}(\mathrm{P}):=\bigcap_{p \in \mathrm{P}} \mathrm{H}_{\mathrm{p}}^{+}$, where $\mathrm{H}_{\mathrm{p}}^{+}$is the closed halfspace above H_{p}. The orthogonal projection of $\mathcal{H}(\mathrm{P})$ onto the x / y-plane is $\operatorname{VD}(\mathrm{P})$.

Point Location

Theorem 13 (Kirkpatrick 1983) Let T be any triangulation of a set $P \subset \mathbb{R}^{2}$ of $n \geq 3$ points. Then in $\mathcal{O}(n)$ time and using $\mathcal{O}(n)$ space one can construct a data structure that finds in $\mathcal{O}(\log n)$ time for any query point $q \in$ conv (P) the triangle from T containing q.

Corollary 14 (Nearest Neighbor Search)

 For any set $P \subset \mathbb{R}^{2}$ of n points one can construct in
$\mathcal{O}(n \log n)$ preprocessing time and

$$
\text { using } \mathcal{O}(n) \text { space }
$$

a data structure that finds in

$$
\mathcal{O}(\log n) \text { query time }
$$

for any query point $q \in \operatorname{conv}(P)$ the points closest to q among the points from P.

Kirkpatrick's Hierarchy

Plan: Construct a hierarchy $\mathrm{T}_{0}, \ldots, \mathrm{~T}_{\mathrm{h}}$ of triangulations, such that

1. $\mathrm{V}\left(\mathrm{T}_{\mathfrak{i}}\right) \subset \mathrm{V}\left(\mathrm{T}_{\mathrm{i}-1}\right), \mathfrak{i}=1, \ldots, h$;
2. $\mathrm{T}_{0}=\mathrm{T}$;
3. T_{h} is a single triangle.
$\operatorname{Search}\left(x \in \mathbb{R}^{2}\right)$
4. For $i=h \ldots 0$: Find the triangle t_{i} of T_{i} that contains x.
5. return t_{0}.

To make the search efficient, we need
(C1) Every triangle in T_{i} intersects few (at most c) triangles of $\mathrm{T}_{\mathrm{i}-1}$.
(C2) h is small $(\leq d \log n)$.

Proposition 15 The search needs at most $3 c d \log n=\mathcal{O}(\log n)$ orientation tests.

Thinning a triangulation

Observation 16 Removing a vertex v and all incident edges from a triangulation leaves a polygonal hole that is star-shaped (all points visible from v).

Lemma 17 A star-shaped polygon, given as a sequences of n vertices, can be triangulated in $\mathcal{O}(n)$ time.
\rightarrow Exercise.

Idea: Obtain T_{i} from $\mathrm{T}_{\mathrm{i}-1}$ by removing a set I of independent vertices and re-triangulate.

The vertices in I should
a) have small degree (otw re-triangulation is too expensive) and
b) there should be many (otw the hierarchy gets too high).

Lemma 18 In any triangulation of $n \geq 3$ points in \mathbb{R}^{2} one can find in $\mathcal{O}(n)$ time an independent set of $\geq \mathrm{n} / 18$ vertices of degree ≤ 8.

Proof. (of Theorem 13)
Construct $T_{0}, \ldots T_{h}$ with $T_{0}=T$. Obtain T_{i} from T_{i-1} by removing an independent set U and re-triangulate the resulting holes.

Lemma 17 and Lemma 18: every step is linear in $\left|\mathrm{V}\left(\mathrm{T}_{\mathrm{i}}\right)\right|$. In total

$$
\sum_{i=0}^{h} \alpha\left|V\left(T_{i}\right)\right| \leq \sum_{i=0}^{h} \alpha n(17 / 18)^{i}<18 \alpha n=\mathcal{O}(n)
$$

for some $\alpha>0$.
Similarly for space, as any triangle in T_{i} is linked to at most 8 triangles from T_{i+1}.
$h=\log _{18 / 17} n<12.2 \log n$.
By Proposition 15 the search needs at most $3 \cdot 8 \cdot \log _{18 / 17} n<292 \log n$ orientation tests. \square

Improvements

The constant 292 in the search time is not optimal.

- Sarnak, Tarjan (1986): 4 logn.
- Edelsbrunner, Guibas, Stolfi (1986): 3 log n.
- Goodrich, Orletsky, Ramaier (1997): $2 \log n$.
- Adamy, Seidel (2000): $1 \log n+2 \sqrt{\log n}$.

