Post Office Problem

Given: $P \subset \mathbb{R}^2$, |P| = n.

Want: data structure to find the closest point from P for any given $q \in \mathbb{R}^2$.

Trivial:

- Query: $\mathcal{O}(n)$
- Preprocessing: $\mathcal{O}(1)$
- Space: *O*(1)

Goal:

- Query: $\mathcal{O}(\log n)$
- Preprocessing: $\mathcal{O}(n\log n)$
- Space: $\mathcal{O}(n)$

Idea: Locus approach – Subdivide the domain into regions on which the answer is the same.

Voronoi Cells

Let $P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$.

Definition 1 For $p_i \in \mathsf{P}$ the Voronoi cell $V_P(\mathfrak{i})$ of $p_\mathfrak{i}$ with respect to P is

$$V_{\mathsf{P}}(\mathfrak{i}) := \left\{ \mathfrak{q} \in \mathbb{R}^2 \mid \|\mathfrak{q} - \mathfrak{p}_{\mathfrak{i}}\| \leq \|\mathfrak{q} - \mathfrak{p}\| \ \forall \ \mathfrak{p} \in \mathsf{P} \right\}.$$

Observation 2

$$\begin{split} V_P(\mathfrak{i}) &= \bigcap_{j \neq \mathfrak{i}} \mathsf{H}(p_{\mathfrak{i}},\,p_{\mathfrak{j}}) \;, \; \text{where} \\ \\ \mathsf{H}(p_{\mathfrak{i}},\,p_{\mathfrak{j}}) &= \left\{ \, \mathfrak{q} \in \mathbb{R}^2 \left| \; \|\mathfrak{q} - p_{\mathfrak{i}}\| \leq \|\mathfrak{q} - p_{\mathfrak{j}}\| \right\}. \end{split}$$

Observation 3 $V_P(i) \neq \emptyset$ and $V_P(i)$ is convex.

 $\label{eq:proof.p} \begin{array}{ll} \textit{Proof.} & p_i \in V_P(i) \text{ and } V_P(i) \text{ is an intersection} \\ \text{of a finite number of halfplanes.} & \Box \end{array}$

Observation 4 $V_P(i) \cap V_P(j)$ for $i \neq j$ is either empty or a line segment or a ray or a line.

Definition 5 (Voronoi Diagram)

VD(P) is the subdivision of the plane induced by the Voronoi polygons $V_P(i)$, i = 1, ..., n.

Denote by VV(P) the set of vertices, by VE(P) the edges and by VR(P) the regions (faces) of VD(P).

From now on we assume P is in general position, that is,

- no three points are collinear and
- no four points are cocircular.

Lemma 6 For every vertex $v \in VV(P)$:

- ν is intersection of exactly three edges from VE(P);
- 2. v is incident to exactly three regions from VR(P);
- 3. v is midpoint of a circle C(v) through exactly three points from P;
- 4. Int $(C(v)) \cap P = \emptyset$.

Proof. Consider $v \in VV(P)$.

Regions are convex $\Rightarrow k \ge 3$ incident edges $e_0, \ldots, e_{k-1} \subseteq VE(P)$.

 $\nu \in e_i \Rightarrow |\nu - p_i| = |\nu - p_{(i+1) \mod k}|$, that is, $p_1, p_2, \ldots, p_{k-1}$ are cocircular.

4) If $p_{\ell} \in Int(C(\nu))$ then $\nu \in V_P(\ell)$ but not in $V_P(0), \ldots V_P(k-1)$, a contradiction.

Voronoi Diagram and Delaunay Triangulation

Lemma 7 The Voronoi edge between $V_P(i)$ and $V_P(j)$ is unbounded $\iff \overline{p_i p_j}$ is an edge of conv(P).

Theorem 8 (Delaunay 1934) For a finite set $P \subset \mathbb{R}^2$ of $n \ge 3$ points in general position the straight-line dual of VD(P) is DT(P).

(Straight-line dual: Graph G = (P, E); $\overline{p_i p_j} \in E \iff |V(i) \cap V(j)| > 1 \land i \neq j.$)

Corollary 9 $|VE(P)| \le 3n - 6$, $|VV(P)| \le 2n - 5$, and VD(P) can be constructed in $O(n \log n)$ time.

Voronoi Diagram and Delaunay Triangulation

Proof. (of Theorem 8) Consider $v \in VV(P)$. By Lemma 6 v is incident to 3 regions $V_P(i_v)$, $V_P(j_v)$ and $V_P(k_v)$. Let $T(v) := \Delta p_{i_v} p_{j_v} p_{k_v}$.

Claim:

$$\mathcal{T}(P) := \{T(\nu) \mid \nu \in VV(P)\}$$

is a triangulation of P.

(Delaunay property follows from Lemma 6d.)

- 1. If two triangles from $\mathcal{T}(P)$ intersect, they intersect in a common edge.
- 2. Every point from CH(P) is contained in at least one triangle from $\mathcal{T}(P)$.

Lifting Map revisited

Definition 10 Let

$$\mathcal{U} = \left\{ (\mathbf{x}, \mathbf{y}, z) \in \mathbb{R}^3 \mid z = x^2 + y^2 \right\}.$$

The map $u : \mathbb{R}^2 \to \mathcal{U}$, $u : (x,y) \mapsto (x,y,x^2+y^2)$ is called *lifting map* onto the unit paraboloid.

For $p \in \mathbb{R}^2$ let H_p the plane tangent to \mathcal{U} in $\mathfrak{u}(p)$, and $h_p: \mathbb{R}^3 \to H_p$ the projection of the x/y-plane onto H_p along the z-axis.

Lemma 11

$$\begin{split} \|u(q)-h_p(q)\| = \|p-q\|^2 \text{, for any } p,q \in \mathbb{R}^2. \\ & \rightarrow \text{Exercise} \end{split}$$

Theorem 12

Let $\mathcal{H}(P) := \bigcap_{p \in P} H_p^+$, where H_p^+ is the closed halfspace above H_p . The orthogonal projection of $\mathcal{H}(P)$ onto the x/y-plane is VD(P).

Point Location

Theorem 13 (Kirkpatrick 1983) Let T be any triangulation of a set $P \subset \mathbb{R}^2$ of $n \geq 3$ points. Then in $\mathcal{O}(n)$ time and using $\mathcal{O}(n)$ space one can construct a data structure that finds in $\mathcal{O}(\log n)$ time for any query point $q \in$ conv(P) the triangle from T containing q.

Corollary 14 (Nearest Neighbor Search) For any set $P \subset \mathbb{R}^2$ of n points one can construct in

 $\mathcal{O}(n\,\log n)$ preprocessing time and

using $\mathcal{O}(n)$ space

a data structure that finds in

 $\mathcal{O}(\log n)$ query time

for any query point $q \in conv(P)$ the points closest to q among the points from P.

Kirkpatrick's Hierarchy

Plan: Construct a hierarchy T_0,\ldots,T_h of triangulations, such that

- 1. $V(T_i) \subset V(T_{i-1})$, $i = 1, \ldots, h$;
- 2. $T_0 = T$;
- 3. T_h is a single triangle.

 $Search(x \in \mathbb{R}^2)$

- 1. For $i = h \dots 0$: Find the triangle t_i of T_i that contains x.
- 2. return t_0 .
- To make the search efficient, we need
 - (C1) Every triangle in T_i intersects few (at most c) triangles of T_{i-1} .

(C2) h is small $(\leq d \log n)$.

Proposition 15 The search needs at most $3cd \log n = O(\log n)$ orientation tests.

Thinning a triangulation

Observation 16 Removing a vertex v and all incident edges from a triangulation leaves a polygonal hole that is star-shaped (all points visible from v).

Idea: Obtain T_i from T_{i-1} by removing a set I of independent vertices and re-triangulate.

The vertices in I should

- a) have small degree (otw re-triangulation is too expensive) and
- b) there should be many (otw the hierarchy gets too high).

Lemma 18 In any triangulation of $n \ge 3$ points in \mathbb{R}^2 one can find in $\mathcal{O}(n)$ time an independent set of $\ge n/18$ vertices of degree ≤ 8 .

Proof. (of Theorem 13) Construct $T_0, \ldots T_h$ with $T_0 = T$. Obtain T_i from T_{i-1} by removing an independent set U and re-triangulate the resulting holes.

Lemma 17 and Lemma 18: every step is linear in $|V(T_{\mbox{i}})|.$ In total

 $\sum_{i=0}^h \alpha |V(T_i)| \leq \sum_{i=0}^h \alpha n (17/18)^i < 18 \alpha n = \mathcal{O}(n),$ for some $\alpha > 0.$

Similarly for space, as any triangle in T_i is linked to at most 8 triangles from T_{i+1} .

 $h = \log_{18/17} n < 12.2 \log n.$

By Proposition 15 the search needs at most $3 \cdot 8 \cdot \log_{18/17} n < 292 \log n$ orientation tests. \Box

Improvements

The constant 292 in the search time is not optimal.

- Sarnak, Tarjan (1986): 4 log n.
- Edelsbrunner, Guibas, Stolfi (1986): 3 log n.
- Goodrich, Orletsky, Ramaier (1997): 2 log n.
- Adamy, Seidel (2000): $1 \log n + 2\sqrt{\log n}$.