
Problem 1

Does P = (p1, . . . , pn) form a

simple Polygon?

?

Problem 2 (Polygon Intersection)

Do two simple polygons intersect?
?

Problem 3 (Segment Intersection Test)

Are n line segments pairwise

disjoint?
?

Problem 4 (Segment Intersection)

Given n line segments, con-

struct all intersections.
⇒

Problem 5 (Segment Arrangement)

Given n line segments, con-

struct their Arrangement.
⇒

Problem 6 (Map Overlay)

Given sets S and T of pair-

wise disjoint line segments,

construct the Arrangement

of S ∪ T .

⇒

1

Segment Intersection

Trivial Algorithm. Test all pairs.

O(n2) time and linear space.

Worst-case optimal. . .

In case of few intersections, we would like to

have sub-quadratic time.

Lower bound Ω(n logn) for Element Uni-

queness: Given x1, . . . , xn ∈
�
, are there i 6= j

such that xi = xj?

Problem 7 Given a set I of n intervals [li, ri] ⊂
�
, 1 ≤ i ≤ n, compute all intersecting pairs.

Theorem 1

Problem 7 can be solved in O(n logn+k) time

and O(n) space, where k is the number of

intersecting pairs.

2

Line Sweep

Idea. Move a line ` (sweep line) from left to

right, such that at any time all intersections

to the left of ` are known.

We do not make any general position as-

sumption here, that is, several segments can

start, end, and/or intersect at the same point.

The sweep line can be imagined as infinitesi-

mally twisted.

p

1

2

3

4

5

6

7

2

3

5

p

1

2

3

4

5

6

7

2

3

5

3

Sweep line status (SLS). Sequence L of

segments that intersect the current sweep li-

ne, sorted by y-coordinate.

Event point (EP). Point where SLS chan-

ges when moving ` (discretization).

Event point schedule (EPS). Sequence E

of event points to be processed (not all known

in advance), sorted lexicographically.

With every EP p we store

• a list end(p) of segments ending at p;

• a list begin(p) of segments that begin at

p;

• a list int(p) of segments that intersect a

neighboring (in SLS) segment at p.

With every segment we store pointers to the

(≤ 2) entries in int(·) lists and a pointer to its

appearance in L.

4

Invariants.

i) L is the sequence of segments from S

which intersect `, sorted by y-coordinate

(≤);

ii) E contains all event points (endpoints

from segments in S and all points of in-

tersection from segments adjacent in L)

that are to the right of `;

iii) All intersections between segments from

S that are to the left of ` have been re-

ported.

5

Event point handling. Consider an EP p.

1) If end(p) ∪ int(p) = ∅, localize p in L.

2) Report all pairs of segments from end(p)∪

begin(p) ∪ int(p) as intersecting.

3) Remove all segments in end(p) from L.

4) Reverse the subsequence in L that is for-

med by the segments from int(p).

5) Insert segments from begin(p) into L, sor-

ted by slope.

6) Test the topmost and bottommost seg-

ment in SLS from begin(p)∪ int(p) for in-

tersection with its successor and prede-

cessor, respectively, and update EP if ne-

cessary.

6

Update of EPS. Insert an EP p for inter-

section of segments s and t.

1) If p does not yet appear in E, insert it.

2) If s or t are contained in some int(·) list

of some other EP q, remove them there

and possibly remove q from E (if end(q)∪

begin(q) ∪ int(q) = ∅).

3) Insert s and t into int(p).

Sweep.

1) Insert all segment endpoints into begin(·)

and end(·) lists of a corresponding EP in

E.

2) As long as E 6= ∅, handle the first EP and

then remove it from E.

7

Runtime Analysis

Initialization: O(n logn).

Handling of an EP p:

O(#intersecting pairs + |end(p)| logn +

|int(p)| + |begin(p)| logn + logn).

Altogether:

O(k + n logn + k logn) = O((n + k) logn).

Space. Clearly |S| ≤ n. At begin |E| ≤ 2n and

|S| = 0. Never more than 2|S| intersection EPs,

therefore linear space overall.

Theorem 2 Problem 4 and Problem 5 can

be solved in O((n + k) logn) time and O(n)

space.

Theorem 3 Problem 1, Problem 2 and Pro-

blem 3 can be solved in O(n logn) time and

O(n) space.

8

Improvements

The presented algorithm is due to Jon Bent-

ley and Thomas Ottmann (1979).

Bernard Chazelle and Herbert Edelsbrunner

(1988) gave an (rather involved) algorithm

showing that O(n logn+k) time can be achie-

ved in Theorem 2 using O(n + k) space.

Kenneth Clarkson and Peter Shor (1989) and

independently Ketan Mulmuley (1988) des-

cribe randomized algorithms with expected

runtime O(n logn+k) using O(n) and O(n+k)

space, respectively.

An optimal deterministic algorithm with run-

time O(n logn + k) and linear space is due to

Ivan Balaban (1995).

9

Degree of predicates

The degree of the polynomial underlying the

predicate (≈ precision needed to compute it).

High degree predicates are more expensive

to compute exactly and lead to robustness

problems when using low precision floating

point computations.

Bentley-Ottmann sweep compares intersec-

tion points (degree five).

To construct the arrangement, orientation

test is needed (degree three). Even to con-

struct an intersection we need degree three.

What can we do with degree two predicates

only?

• Compare endpoints lexicographically.

• Compare endpoint relative to segment.

10

Red-Blue Intersections

Input segments form two interior-disjoint sets

R and B.

Definition 4 A set S of line segments in
� d

is interior-disjoint ⇐⇒ @ s, t ∈ S for which

(s \ V(s)) ∩ t 6= ∅.

Lazy Computation. Defer handling of an

intersection as long as possible, to the next

segment endpoint. ⇒ EPs known in advance.

Witness. The lexicographically smallest seg-

ment endpoint in the closed wedge bounded

by two intersecting segments s and t and to

the right of s∩ t is called the witness of s∩ t.

s

t

w

11

Invariants

1. L is the sequence of segments from S in-

tersecting `; s appears before t in L =⇒ s

intersects ` above t or s intersects t and

the witness of this intersection is to the

right of `.

2. All intersections of segments from S who-

se witness is to the left of `, have been

reported.

12

SLS Data Structure

The SLS structure consist of three levels.

1) Collect adjacent segments of the same

color in bundles, stored as balanced search

trees. For each bundle store pointers to

the topmost and bottommost segment.

2) All bundles are stored in a doubly linked

lists, sorted by y-coordinate.

3) All red bundles are stored in a balanced

search tree (bundle tree).

list

bundle

tree

Search tree structure should support insert,

delete, split and merge in (amortized) loga-

rithmic time each, e.g., splay trees.

13

Handling of an EP q

1) Localize p in bundle tree → ≤ 2 bundles

containing p.

2) Localize p in ≤ 2 red bundles found and

split them at p. All red bundles are now

either above, ending, or below w.r.t. p.

3) Localize p within the blue bundles by li-

near search.

4) Localize p in the ≤ 2 blue bundles found

and split them at p. All bundles are now

either above, ending, or below w.r.t. p.

5) Run through the list of bundles around p.

Handle all adjacent pairs of bundles (A, B)

that are in wrong order and report all pairs

of segments as intersecting. (Exchange A

and B in the bundle list and merge them

with their new neighbors.)

6) Report all pairs from begin(p)×end(p) as

intersecting.

7) Remove ending bundles and insert star-

ting segments, sorted by slope and bund-

led by color.
14

p

15

Analysis

Sorting EPs: O(n logn).

Every EP generates a constant number of

tree searches and splits of O(logn) each.

Every exchange in Step 5 generates at least

one intersection.

New bundles are created only by inserting a

new segment or by a split. Thus O(n) bundles

are created and the number of merge opera-

tions is O(n).

The linear search in Step 5 (beyond the en-

ding bundles) can be charged to the subse-

quent merge operation.

Overall runtime is O(n logn + k) and space is

linear.

Remark: If a segment should pass through an

EP (at most one per color can), split it there

but do not report an intersection.

16

Theorem 5 For two sets R and B of interior-

disjoint line segments in
� 2 one can find all

intersecting pairs of segments in O(n logn +

k) time and linear space, using predicates of

maximum degree two. Here n = |R| + |B| and

k is the number of intersecting pairs.

Remarks. The first optimal algorithm to con-

struct red-blue intersections was given by Har-

ry Mairson and Jorge Stolfi in 1988.

In 1994 Timothy Chan devised a trapezoid-

sweep algorithm that used predicates of de-

gree three only.

The version discussed above is due to Andrea

Mantler and Jack Snoeyink (2000).

17

Axis-parallel rectangles

Efficiently represented by 2d coordinates. Of-

ten used as a preprocessing tool when com-

puting intersections (bounding-box).

Problem 8 Given a set R of n axis-parallel

rectangles in
� 2, compute all intersecting pairs.

Different from line segment intersection. . .

Observation 6 Two axis-parallel rectangles

intersect ⇐⇒ the left side of one intersects

the other.

Leads to stabbing queries:

Problem 9

Given a set I of n intervals [li, ri] ⊂
�
, 1 ≤

i ≤ n. Build a data structure to report for a

given query value p ∈
�

all intervals from I

containing p.

18

Segment trees

Idea: locus approach, interval endpoints divi-

de real line into regions with identical answers

(elementary intervals).

Definition 7 (Bentley 1977)

A segment tree for a set I of n real intervals is

a balanced binary search tree T on the ≤ 2n+1

elementary intervals.

To every node v of T an interval A(v) is as-

sociated that is the union of all elementary

intervals in the subtree with root v.

An interval i ∈ I is stored in every node v of T

for which A(v) ⊂ i but not A(p(v)) ⊂ i, where

p(v) is the parent node of v.

Lemma 8

An interval is stored at ≤ 2dlog 2n + 1e + 2

nodes of a segment tree.

19

1

2

3

4

7

8

5

6

1

2,4

23,4

3

56

67

7

7

8

8

20

Theorem 9 For a set I of n real intervals

one can in O(n logn) time and space build

a data structure that allows to report for a

given query value p ∈
�

all intervals from I

containing p in O(logn + k) time, where k is

the size of the output. Insertion and deletion

of an interval can be done in O(logn) time.

Theorem 10 For a set R of n axis-parallel

rectangles in
� 2 one can report all intersec-

ting pairs in O(n logn + k) time and space,

where k is the size of the output.

21

Rectangle Intersection

Data structure:

1) Store the y-intervals of all rectangles in-

tersecting the sweep line in a segment

tree.

2) Stored the y-intervals of all rectangles in-

tersecting the sweep line in a threaded ba-

lanced search tree, sorted by their smaller

coordinate.

Algorithm: When a left lower corner of some

rectangle r is reached, do

1) Determine all rectangles in SLS that in-

tersect the lower left corner of r and re-

port intersections. (Query in segment tree)

2) Localize the lower left corner of r in the

search tree and traverse it linearly, repor-

ting intersections, until the lower side of

the current rectangle is above r.

3) Insert r into the SLS structures.
22

