Exercise 1

You are given \(n \) axis-parallel rectangles in \(\mathbb{R}^2 \) with their bottom sides lying on the x-axis. Construct their union in \(O(n \log n) \) time.

Exercise 2

Let \(S \) be a set of \(n \) segments that are either horizontal or vertical. Describe an \(O(n \log n) \) time and \(O(n) \) space algorithm that counts the number of pairs in \(\binom{S}{2} \) that intersect.

Exercise 3

What is the algebraic degree of the \texttt{InCircle} predicate? More precisely, you are given three points \(p, q, r \) in the plane that define a circle \(C \) and a fourth point \(s \). You want to know if \(s \) is inside \(C \) or not. What is the degree of the polynomial(s) you need to evaluate to answer this question?