10. Line Arrangements

During the course of this lecture we encountered several situations where it was convenient to assume that a point set is “in general position”. In the plane general position usually amounts to no three points being collinear and/or no four of them being cocircular. This raises an algorithmic question: How can we test for \(n \) given points whether or not three of them are collinear? Obviously, we can test all triples in \(\mathcal{O}(n^3) \) time. Can we do better? In order to answer this question, we will take a detour through the dual plane.

Recall the standard projective duality transform that maps a point \(p = (p_x, p_y) \) to the line \(p' : y = p_x x - p_y \) and a non-vertical line \(g : y = mx + b \) to the point \(g' = (m, -b) \). This map is . . .

- Incidence preserving: \(p \in g \iff g' \in p' \).
- Order preserving: \(p \) is above \(g \iff g' \) is above \(p' \).

![Figure 10.1: Point ↔ line duality with respect to the parabola \(y = \frac{1}{2}x^2 \).](image)

Another way to think of duality is in terms of the parabola \(P : y = \frac{1}{2}x^2 \). For a point \(p \) on \(P \), the dual line \(p' \) is the tangent to \(P \) at \(p \). For a point \(p \) not on \(P \), consider the vertical projection \(p' \) of \(p \) onto \(P \): the slopes of \(p' \) and \(p'' \) are the same, just \(p'' \) is shifted by the difference in \(y \)-coordinates.

The question of whether or not three points in the primal plane are collinear transforms to whether or not three lines in the dual plane meet in a point. This question in turn we will answer with the help of line arrangements as defined below.
10.1 Arrangements

The subdivision of the plane induced by a finite set L of lines is called the arrangement $A(L)$. A line arrangement is simple if no two lines are parallel and no three lines meet in a point. Although lines are unbounded, we can regard a line arrangement a bounded object by (conceptually) putting a sufficiently large box around that contains all vertices. Such a box can be constructed in $O(n \log n)$ time for n lines. Moreover, we can view a line arrangement as a planar graph by adding an additional vertex at “infinity”, that is incident to all rays which leave this bounding box. For algorithmic purposes, we will mostly think of an arrangement as being represented by a doubly connected edge list (DCEL), cf. Section 3.3.

Theorem 10.1 A simple arrangement $A(L)$ of n lines in \mathbb{R}^2 has $\binom{n}{2}$ vertices, n^2 edges, and $\binom{n}{2} + n + 1$ faces/cells.

Proof. Since all lines intersect and all intersection points are pairwise distinct, there are $\binom{n}{2}$ vertices.

The number of edges we prove by induction on n. For $n = 1$ we have $1^2 = 1$ edge. By adding one line to an arrangement of $n - 1$ lines we split $n - 1$ existing edges into two and introduce n new edges along the newly inserted line. Thus, there are in total $(n - 1)^2 + 2n - 1 = n^2 - 2n + 1 + 2n - 1 = n^2$ edges.

The number f of faces can now be obtained from Euler’s formula $v - e + f = 2$, where v and e denote the number of vertices and edges, respectively. However, in order to apply Euler’s formula we need to consider $A(L)$ as a planar graph and take the symbolic “infinite” vertex into account. Therefore,

$$f = 2 - \left(\binom{n}{2} + 1 \right) + n^2 = 1 + \frac{1}{2} (2n^2 - n(n - 1)) = 1 + \frac{1}{2} (n^2 + n) = 1 + \binom{n}{2} + n.$$

The complexity of an arrangement is simply the total number of vertices, edges, and faces (in general, cells of any dimension).

10.2 Construction

As the complexity of a line arrangement is quadratic, there is no need to look for a sub-quadratic algorithm to construct it. We will simply construct it incrementally, inserting the lines one by one. Let ℓ_1, \ldots, ℓ_n be the order of insertion.

At Step i of the construction, locate ℓ_i in the leftmost cell of $A(\{\ell_1, \ldots, \ell_{i-1}\})$ it intersects. (The halfedges leaving the infinite vertex are ordered by slope.) This takes $O(i)$ time. Then traverse the boundary of the face F found until the halfedge h is found where ℓ_i leaves F. Insert a new vertex at this point, splitting F and h and continue in the same way with the face on the other side of h.

62
What is the time needed for this traversal? The complexity of $A((\ell_1, \ldots, \ell_{i-1}))$ is $\Theta(i^2)$, but we will see that the region traversed by a single line has linear complexity only.

10.3 Zone Theorem

For a line ℓ and an arrangement $A(L)$, the zone $Z_{A(L)}(\ell)$ of ℓ in $A(L)$ is the set of faces from $A(L)$ whose closure intersects ℓ.

Theorem 10.2 Given an arrangement $A(L)$ of n lines in \mathbb{R}^2 and a line ℓ (not necessarily from L), the total number of edges in all cells of the zone $Z_{A(L)}(\ell)$ is at most $6n$.

Proof. Without loss of generality suppose that ℓ is horizontal and that none of the lines from L is horizontal. (The first condition can be addressed by rotating the plane and the second by deciding that the left vertex of a horizontal edge is higher than the right vertex.)

For each cell of $Z_{A(L)}(\ell)$ split its boundary at its topmost vertex and at its bottommost vertex. Those edges that have the cell to their right are called left-boundary for the cell and those edges that have the cell to their left are called right-boundary. We will show that there are at most $3n$ left-boundary edges in $Z_{A(L)}(\ell)$ by induction on n. By symmetry, the same bound holds also for the number of right-boundary edges in $Z_{A(L)}(\ell)$.

For $n = 1$, there is exactly one left-boundary edge in $Z_{A(L)}(\ell)$ and $1 \leq 3n = 3$. Assume the statement is true for $n - 1$.

Consider the rightmost line r from L intersecting ℓ and the arrangement $A(L \setminus \{r\})$. By the induction hypothesis there are at most $3n - 3$ left-boundary edges in $Z_{A(L \setminus \{r\}))(\ell)$. Adding r back adds at most three new left-boundary edges: At most two existing left-boundary edges (call them ℓ_0 and ℓ_1) of the rightmost cell of the zone are intersected.
by r and thereby split in two, and r itself contributes one more left-bounding edge to that cell. The line r cannot contribute a left-bounding edge to any cell other than the rightmost: to the left of r, the edges induced by r form right-bounding edges only and to the right of r all other cells touched by r (if any) are shielded away from ℓ by one of ℓ_0 or ℓ_1. Therefore, the total number of edges in $Z_{\mathcal{A}(L)}(\ell)$ is bounded from above by $3 + 3n - 3 = 3n$. □

Corollary 10.3 The arrangement of n lines in \mathbb{R}^2 can be constructed in $O(n^2)$ time and this is optimal.

Corresponding bounds in \mathbb{R}^d: Complexity of arrangements in $\Theta(n^d)$, zone of a hyperplane is $O(n^{d-1})$.

10.4 The Power of Duality

The real beauty and power of line arrangements becomes apparent in context of projective point ↔ line duality. The following problems all can be solved in $O(n^2)$ time and space by constructing the dual arrangement.

General position test. Given n points in \mathbb{R}^2, are any three of them collinear? (Dual: do three lines meet in a point?)

Minimum area triangle. Given n points in \mathbb{R}^2, what is the minimum area triangle spanned by any three of them? For any vertex of the dual arrangement (primal: line through two points p and q) find the closest point vertically above/below through which an input line passes (primal: closest line above/below parallel to the line through p and q that passes through an input point). In this way one can find $O(n^2)$ candidate triangles by constructing the arrangement of the n dual lines. The smallest among those candidates
can be determined by a straightforward minimum selection. This last step is necessary because vertical distance does not translate to area directly, which is determined by the orthogonal distance between the lines.

10.5 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now it is the time to distribute the prey. Both, of course, should get the same number of rubies and the same number of diamonds. On the other hand, it would be a pity to completely disintegrate the beautiful necklace. Hence they want to use as few cuts as possible to achieve a fair gem distribution.

To phrase the problem in a geometric (and somewhat more general) setting: Given two finite sets \(R \) and \(D \) of points, construct a line that bisects both sets, that is, in either halfplane defined by the line there are about half of the points from \(R \) and about half of the points from \(D \). To solve this problem, we will make use of the concept of levels in arrangements.

Definition 10.4 For an arrangement \(A(L) \) induced by a set \(L \) of \(n \) lines in the plane, we say that a point \(p \) is on the \(k \)-level in \(A(L) \) if and only if \(p \) lies on some line from \(L \) and there are at most \(k - 1 \) lines below and at most \(n - k \) lines above \(p \). The 0-level is also referred to as the lower envelope.

![Figure 10.4: The 2-level of an arrangement.](image)

Another way to look at the \(k \)-level is to consider the lines to be real functions; then the lower envelope is the pointwise minimum of those functions, and the \(k \)-level is defined by taking pointwise the \(k \)-smallest function value.

Theorem 10.5 Let \(R, D \subset \mathbb{R}^2 \) be finite sets of points. Then there exists a line that bisects both \(R \) and \(D \). That is, in either open halfplane defined by \(\ell \) there are no more than \(|R|/2 \) points from \(R \) and no more than \(|D|/2 \) points from \(D \).

Proof. Without loss of generality suppose that both \(|R| \) and \(|D| \) are odd. (If, say, \(|R| \) is even, simply remove an arbitrary point from \(R \). Any bisector for the resulting set is also
a bisector for \(R \). We may also suppose that no two points from \(R \cup D \) have the same \(x \)-coordinate. (Otherwise, rotate the plane infinitesimally.)

Let \(R^* \) and \(D^* \) denote the set of lines dual to the points from \(R \) and \(D \), respectively. Consider the arrangement \(A(R^*) \). The median level of \(A(R^*) \) defines the bisecting lines for \(R \). As \(|R| = |R^*| \) is odd, both the leftmost and the rightmost segment of this level are defined by the same line \(\ell_r \) from \(R^* \), the one with median slope. Similarly there is a corresponding line \(\ell_d \) in \(A(D^*) \).

Since no two points from \(R \cup D \) have the same \(x \)-coordinate, no two lines from \(R^* \cup D^* \) have the same slope, and thus \(\ell_r \) and \(\ell_d \) intersect. Consequently, being piecewise linear continuous functions, the median level of \(A(R^*) \) and the median level of \(A(D^*) \) intersect. Any point that lies on both median levels corresponds to a primal line that bisects both point sets simultaneously. \(\square \)

How can the thieves use Theorem 10.5? If they are smart, they drape the necklace along some convex curve, say, a circle. Then by Theorem 10.5 there exists a line that simultaneously bisects the set of diamonds and the set of rubies. As any line intersects the circle at most twice, the necklace is cut at most twice.