
12. Visibility Graphs and 3-Sum
Lecture on Monday 9th November, 2009 by Michael Ho�mann <hoffmann@inf.ethz.ch>

12.1 Sorting all Angular Sequences.

Theorem 12.1 Consider a set P of n points in the plane. For a point q 2 P let cP(q)

denote the circular sequence of points from S \ {q} ordered counterclockwise around
q (in order as they would be encountered by a ray sweeping around q). All cP(q),
q 2 P, collectively can be obtained in O(n2) time.

Proof. Consider the projective dual P� of P. An angular sweep around a point q 2 P

in the primal plane corresponds to a traversal of the line q� from left to right in the
dual plane. (A collection of lines through a single point q corresponds to a collection of
points on a single line q� and slope corresponds to x-coordinate.) Clearly, the sequence of
intersection points along all lines in P� can be obtained by constructing the arrangement
in O(n2) time. In the primal plane, any such sequence corresponds to an order of the
remaining points according to the slope of the connecting line; to construct the circular
sequence of points as they are encountered around q, we have to split the sequence
obtained from the dual into those points that are to the left of q and those that are to
the right of q; concatenating both yields the desired sequence. �

12.2 Segment Endpoint Visibility Graphs

A fundamental problem in motion planning is to �nd a short(est) path between two
given positions in some domain, subject to certain constraints. As an example, suppose
we are given two points p, q 2 R2 and a set S � R2 of obstacles. What is the shortest
path between p and q that avoids S?

Observation 12.2 The shortest path between two points that does not cross a set of
polygonal obstacles (if it exists) is a polygonal path whose interior vertices are
obstacle vertices.

One of the simplest type of obstacle conceivable is a line segment. In general the
plane may be disconnected with respect to the obstacles, for instance, if they form a
closed curve. However, if we restrict the obstacles to pairwise disjoint line segments then
there is always a free path between any two given points. Apart from start and goal
position, by the above observation we may restrict our attention concerning shortest
paths to straight line edges connecting obstacle vertices, in this case, segment endpoints.

Definition 12.3 Consider a set S of n disjoint line segments in R2. The segment
endpoint visibility graph V(S) is a plane straight line graph de�ned on the segment
endpoints. Two segment endpoints p and q are connected in V(S) if and only if

71



Visibility Graphs and 3-Sum (9.11.2009) CG 2009

� the line segment pq is in S or

� pq \ s � {p, q} for every segment s 2 S.

Figure 12.1: A set of disjoint line segments and their endpoint visibility graph.

If all segments are on the convex hull, the visibility graph is complete. If they form
parallel chords of a convex polygon, the visibility graph consists of copies of K4, glued
together along opposite edges and the total number of edges is linear only. In any case,
these graphs are Hamiltonian. :-)

Constructing V(S) for a given set S of disjoint segments in a brute force way takes
O(n3) time. (Take all pairs of endpoints and check all other segments for obstruction.)

Theorem 12.4 (Welzl [3]) The segment endpoint visibility graph of n disjoint line seg-
ments can be constructed in worst case optimal O(n2) time.

Proof. We have seen above how all sorted angular sequences can be obtained from the
dual line arrangement in O(n2) time. Topologically sweep the arrangement from left
to right (corresponds to changing the slope of the primal rays from −∞ to +∞) while
maintaining for each segment endpoint p the segment s(p) it currently \sees" (if any).
Initialize by brute force in O(n2) time (direction vertically downwards). Each intersection
of two lines corresponds to two segment endpoints \seeing" each other along the primal
line whose dual is the point of intersection. In order to process an intersection, we only
need that all preceding (located to the left) intersections of the two lines involved have
already been processed. This order corresponds to a topological sort of the arrangement
graph where all edges are directed from left to right. A topological sort can be obtained,
for instance, via (reversed) post order DFS in linear time.

When processing an intersection, there are four cases. Let p and q be the two points
involved such that p is to the left of q.

1. The two points belong to the same input segment → output the edge pq, no change
otherwise.

2. q is obscured from p by s(p) → no change.

3. q is endpoint of s(p) → output pq and update s(p) to s(q).

72



CG 2009 12.3. 3-Sum

4. Otherwise q is endpoint of a segment t that now obscures s(p) → output pq and
update s(p) to t.

Thus any intersection can be processed in constant time and the overall runtime of this
algorithm is quadratic. �

12.3 3-Sum

The 3-Sum problem is the following: Given a set S of n integers, does there exist a
three-tuple1 of elements from S that sum up to zero? By testing all three-tuples this
can obviously be solved in O(n3) time. If the tuples to be tested are picked a bit more
cleverly, we obtain an O(n2) algorithm.

Let (s1, . . . , sn) be the sequence of elements from S in increasing order. Then we test
the tuples as follows.

For i = 1, . . . , n − 2 f
j = i, k = n.
While k � j f

If si + sj + sk = 0 then exit with triple si, sj, sk.
If si + sj + sk > 0 then k = k − 1 else j = j + 1.

g
g

The runtime is clearly quadratic (initial sorting can be done in O(n logn) time).
Regarding the correctness observe that the following is an invariant that holds at begin
of the inner loop: There exists no suitable triple that contains si and s` for any ` < j or
` > k.

Interestingly, this is the essentially the best algorithm known for 3-Sum. It is widely
believed that the problem cannot be solved in sub-quadratic time, but so far this has been
proven in some very restricted models of computation only, such as the linear decision
tree model [1].

12.4 3-Sum hardness

There is a whole class of problems that are equivalent to 3-Sum up to sub-quadratic time
reductions [2]; such problems are referred to as 3-Sum-hard.

Definition 12.5 A problem P is 3-Sum-hard if and only if every instance of 3-Sum
of size n can be solved using a constant number of instances of P|each of O(n)

size|and o(n2) additional time.

1That is, an element of S may be chosen twice or even three times, although the latter makes sense for

the number 0 only. :-)

73



Visibility Graphs and 3-Sum (9.11.2009) CG 2009

As an example, consider the Problem GeomBase: Given n points on the three hori-
zontal lines y = 0, y = 1, and y = 2, is there a non-horizontal line that contains at least
three of them?

GeomBase can be reduced to 3-Sum as follows. For an instance S = {s1, . . . , sn} of
3-Sum, create an instance P of GeomBase in which for each si there are three points in
P: (si, 0), (−si/2, 1), and (si, 2). If there are any three collinear points in P, there must
be one from each of the lines y = 0, y = 1, and y = 2. So suppose that p = (si, 0),
q = (−sj/2, 1), and r = (sk, 2) are collinear. The inverse slope of the line through

p and q is −sj/2−si

1−0
= −sj/2 − si and the inverse slope of the line through q and r is

sk+sj/2

2−1
= sk + sj/2. The three points are collinear if and only if the two slopes are equal,

that is, −sj/2 − si = sk + sj/2 ⇐⇒ si + sj + sk = 0.
A very similar problem is General Position, in which one is given n arbitrary points

and has to decide whether any three are collinear. For an instance S of 3-Sum, create an
instance P of General Position by projecting the numbers si onto the curve y = x3, that
is, P = {(a, a3) | a 2 S}.

Suppose three of the points, say, (a, a3), (b, b3), and (c, c3) are collinear. This is the
case if and only if the slopes of the lines through each pair of them are equal. (Observe
that a, b, and c are pairwise distinct.)

(b3 − a3)/(b − a) = (c3 − b3)/(c − b) ⇐⇒
b2 + a2 + ab = c2 + b2 + bc ⇐⇒

b = (c2 − a2)/(a − c) ⇐⇒
b = −(a + c) ⇐⇒

a + b + c = 0 .

Minimum Area Triangle is a strict generalization of General Position and, therefore, also
3-Sum-hard.

In Segment Splitting/Separation, we are given a set of n line segments and have to
decide whether there exists a line that does not intersect any of the segments but splits
them into two non-empty subsets. To show that this problem is 3-Sum-hard, we can
use essentially the same reduction as for GeomBase, where we interpret the points along
the three lines y = 0, y = 1, and y = 2 as su�ciently small \holes". The parts of the
lines that remain after punching these holes form the input segments for the Splitting
problem. Horizontal splits can be prevented by putting constant size gadgets somewhere
beyond the last holes, see the �gure below. The set of input segments for the segment

splitting problem requires sorting the points along each of the three horizontal lines,

74



CG 2009 12.4. 3-Sum hardness

which can be done in O(n logn) = o(n2) time. It remains to specify what \su�ciently
small" means for the size of those holes. As all input numbers are integers, it is not
hard to see that punching a hole of (x − 1/4, x + 1/4) around each input point x is small
enough.

In Segment Visibility, we are given a set S of n horizontal line segments and two
segments s1, s2 2 S. The question is: Are there two points, p1 2 s1 and p2 2 s2 which
can see each other, that is, the open line segment p1p2 does not intersect any segment
from S? The reduction from 3-Sum is the same as for Segment Splitting, just put s1

above and s2 below the segments along the three lines.

In Motion Planning, we are given a robot (line segment), some environment (modeled
as a set of disjoint line segments), and a source and a target position. The question is:
Can the robot move (by translation and rotation) from the source to the target position,
without ever intersecting the \walls" of the environment?

To show that Motion Planning is 3-Sum-hard, employ the reduction for Segment
Splitting from above. The three \punched" lines form the doorway between two rooms,
each modeled by a constant number of segments that cannot be split, similar to the
boundary gadgets above. The source position is in one room, the target position in the
other, and to get from source to target the robot has to pass through a sequence of three
collinear holes in the door (suppose the doorway is su�ciently small compared to the
length of the robot).

Questions

34. What is the endpoint visibility graph for a set of disjoint line segments in the
plane and how can it be constructed? Give the de�nition and explain the relation
to shortest paths. Describe the O(n2) algorithm by Welzl, including full proofs of
Theorem 12.1 and Theorem 12.4.

35. Is there a subquadratic algorithm for General Position? Explain the term
3-Sum hard and its implications and give the reduction from 3-Sum to General
Position.

36. Which problems are known to be 3-Sum-hard? List at least three problems
(other than 3-Sum) and brie
y sketch the corresponding reductions.

References

[1] Je� Erickson, Lower bounds for linear satis�ability problems, Chicago J. Theoret.
Comput. Sci. 1999, 8.

[2] A. Gajentaan and M. H. Overmars, On a class of O(n2) problems in computational
geometry, Comput. Geom. Theory Appl. 5 (1995), 165{185.

75



Visibility Graphs and 3-Sum (9.11.2009) CG 2009

[3] Emo Welzl, Constructing the visibility graph for n line segments in O(n2) time,
Inform. Process. Lett. 20 (1985), 167{171.

76


