RECAP: Extremal problems — Examples___

Proposition 1. If G is an n-vertex graph with at most
n — 2 edges then G is disconnected.

A Question you always have to ask:
Can we improve on this proposition?

Answer. NO! The same statementis FALSE withn—1
In the place of n — 2.
Proposition 1 is , as shown by P,

Proposition 1. + P,: The minimum value of e(G)
over connected graphsis n — 1.

Proposition 2. If G is an n-vertex graph with at least
n edges then G contains a cycle.

Remark. Proposition 2 is also , (e.g. Pp).

Proposition 2. + Remark: The maximum value of
e(G) over acyclic (i.e. cycle-free) graphsis n — 1.
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Extremal problems — More example

Vague description: An extremal problem asks for the
maximum or minimum value of a parameter over a
class of objects (graphs, in most cases).

Proposition. G is an n-vertex graph with §(G) >
|n/2], then G is connected.

Remark. The above proposition is , as
shown by KL”/QJ + K[n/Q} :

Graph G + H is the disjoint union (or sum) of graphs G and
H. For an integer m, mG is the graph consisting of m disjoint
copies of G.

Prop. + Remark: The maximum value of §(G) over
disconnected graphsiis [5]| — 1.



Extremal Problems

graph graph type of value of
property parameter | extremum | extremum
connected e(G) minimum n—1
acyclic e(G) maximum n—1
disconnected 0(G) maximum {%J —1
K3-free e(@) maximum {%QJ




Triangle-free subgraphs

Theorem. (Mantel, 1907) The maximum number of
. i i 2
edges in an n-vertex triangle-free graph is | ;- |.

Proof.
() There is a triangle-free graph with L”TQJ edges.

(43) If G is a triangle-free graph, then e(G) < L”TQJ.

Proof of (77) is with extremality. (Look at the neigh-
borhood of a vertex of maximum degree.)



Complete k-partite graphs

(G is a complete k-partite graph if there is a partition
Vi U... Vi, = V(QG) of the vertex set, such that uv €
E(G) iff uw and v are in different parts of the partition.
If |V;| = n;, then G is denoted by K ,....n,.-

The Turan graph 73, ;- is the complete r-partite graph
on n vertices whose partite sets differ in size by at
most 1. (All partite sets have size [n/r] or [n/r].)

Lemma Among r-colorable graphs the Turan graph
Is the unique graph, which has the most number of
edges.

Proof. Local change. O



Turan’s Theorem

The Turan number ex(n, H) of a graph H is the lar-
gest integer m such that there exists an H-free* graph
on n vertices with m edges.

Example: Mantel's Theorem states ex(n, K3) = {”TQJ :

Theorem. (Turan, 1941)

ex(n, Ky) = e(Ty r—1) = (1 — %) (Z)-I—O(n)

Proof. Prove by induction on r that

there is an (r — 1)-partite graph H with

G 2 Ky V(H)=V(G)and e(H) > e(G).

Then apply the Lemma to finish the proof. O

*Here H-free means that there is no subgraph isomorphic to H
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Turan-type problems

Question. (Turan, 1941) What happens if instead of
K4, which is the graph of the tetrahedron, we forbid
the graph of some other platonic polyhedra? How ma-
ny edges can a graph without an octahedron (or cube,
or dodecahedron or icosahedron) have?

The platonic solids



Erdos-Simonovits-Stone Theorem

Theorem. (Erdds-Stone, 1946) For arbitrary fixed in-
tegersr >2andt > 1

cx(n, Tr) = (1= —=) (0) + o(n?)

Corollary. (Erdos-Simonovits, 1966) For any graph
H,

1 n
ex(n, H) = <1 ~ (i) = 1) (2) + o(n?).

Corollaries of the Corollary.

ex(n,oct ahedron) = % + o(n?)
n2

ex(n,dodecahedron) = i + o(n?)
"2

ex(n,i cosahedron) = 3 + o(n?)

ex(n,cube) = o(n?)



Proof of the Erdos-Simonovits Corollary__

Theorem. (Erdds-Stone, 1946) For arbitrary fixed in-
tegersr >2andt > 1

cx(n, ) = (1= —=) (0) + o(n)

Corollary. (Erdos-Simonovits, 1966) For any graph
H,

1 n
ex(n, H) = <1 ~ = 1) (2> + o(n?).

Proof of the Corollary. Letr = x(H).
¢ X(Tn,r—l) < x(H), so 6(Tn,r—l) ex(n, H).

® Trar 2D H,s0ex(n,Trayr) > ex(n, H), where
IS a constant depending on H; say o = «a(H).



The number of edges in a Cs-free graph_____
Theorem (Erdés, 1938) ex(n, Cy) = O(n3/2)
Proof. Let G be a C4-free graph on n vertices.

C = C(G) := number of K7 > (“cherries”) in G.
Doublecount C.

Counting by the midpoint: Every vertex v is the mid-
point of exactly <d(2”)) cherries. Hence

c=Y (d(;)).

veV

Counting by the endpoints: Every pair {u,w} of verti-
ces form the endpoints of at most one cherry. (Other-
wise there isa C, C G.) Hence

C§1-(Z).
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Proof cont'd

Combine and apply Jensen’s inequality
(Note that z — (g) is a convex function)

d(v) d(G)
pzcz T (1) ()
d(G) = %Zvev d(v) is the average degree of G.

n—1 . <J(G)) 5 (d(G) — 1)2
D D D

Hence vn — 1+ 1 > d(G).

Theorem (E. Klein, 1938) ex(n,Cy) = ©(n3/2)
Proof. Homework.

Theorem (Kovari-Sos-Turan, 1954) Fors >t >1

o1
ex(n, Kis) <csn“ 1

Proof. Homework.
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Open problems and Conjectures

Known results.

Qn%?) < ex(n,Q3) < O(n®/7)
Q(n98) < ex(n,Cg) < O(n%*)
Qn?7) < ex(n, ) < O(n'/7)
Conjectures.
21
ex(n, Kt s) = @(n m'”{t’8}>truefort=2,3and32t
ort>4ands > (t—1)!
14+
ex(n,Cor) = @(n k) true for k = 2,3 and 5

ex(n,()3) = O (n )
If H is a d-degenerate bipartite graph, then

ex(n,H) = O (nQ_%) :
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