
RECAP: Extremal problems — Examples

Proposition 1. If G is an n-vertex graph with at most
n − 2 edges then G is disconnected.

A Question you always have to ask:
Can we improve on this proposition?

Answer. NO! The same statement is FALSE with n−1

in the place of n − 2.
Proposition 1 is best possible, as shown by Pn.

Proposition 1. + Pn: The minimum value of e(G)

over connected graphs is n − 1.

Proposition 2. If G is an n-vertex graph with at least
n edges then G contains a cycle.

Remark. Proposition 2 is also best possible, (e.g. Pn).

Proposition 2. + Remark: The maximum value of
e(G) over acyclic (i.e. cycle-free) graphs is n − 1.
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Extremal problems — More example

Vague description: An extremal problem asks for the
maximum or minimum value of a parameter over a
class of objects (graphs, in most cases).

Proposition. G is an n-vertex graph with δ(G) ≥
bn/2c, then G is connected.

Remark. The above proposition is best possible, as
shown by Kbn/2c + Kdn/2e.

Graph G + H is the disjoint union (or sum) of graphs G and
H. For an integer m, mG is the graph consisting of m disjoint
copies of G.

Prop. + Remark: The maximum value of δ(G) over
disconnected graphs is bn

2c − 1.
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Extremal Problems

graph graph type of value of
property parameter extremum extremum

connected e(G) minimum n − 1

acyclic e(G) maximum n − 1

disconnected δ(G) maximum
⌊

n
2

⌋

− 1

K3-free e(G) maximum
⌊

n2

4

⌋
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Triangle-free subgraphs

Theorem. (Mantel, 1907) The maximum number of
edges in an n-vertex triangle-free graph is bn2

4 c.

Proof.

(i) There is a triangle-free graph with bn2

4 c edges.

(ii) If G is a triangle-free graph, then e(G) ≤ bn2

4 c.

Proof of (ii) is with extremality. (Look at the neigh-
borhood of a vertex of maximum degree.)
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Complete k-partite graphs

G is a complete k-partite graph if there is a partition
V1 ∪ . . . Vk = V (G) of the vertex set, such that uv ∈
E(G) iff u and v are in different parts of the partition.
If |Vi| = ni, then G is denoted by Kn1,...,nk.

The Turán graph Tn,r is the complete r-partite graph
on n vertices whose partite sets differ in size by at
most 1. (All partite sets have size dn/re or bn/rc.)

Lemma Among r-colorable graphs the Turán graph
is the unique graph, which has the most number of
edges.

Proof. Local change. 2
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Turán’s Theorem

The Turán number ex(n, H) of a graph H is the lar-
gest integer m such that there exists an H-free∗ graph
on n vertices with m edges.

Example: Mantel’s Theorem states ex(n, K3) =

⌊

n2

4

⌋

.

Theorem. (Turán, 1941)

ex(n, Kr) = e(Tn,r−1) =

(

1 − 1

r − 1

)

(n

2

)

+O(n).

Proof. Prove by induction on r that

G 6⊇ Kr =⇒ there is an (r − 1)-partite graph H with
V (H) = V (G) and e(H) ≥ e(G).

Then apply the Lemma to finish the proof. 2

∗Here H-free means that there is no subgraph isomorphic to H
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Turán-type problems

Question. (Turán, 1941) What happens if instead of
K4, which is the graph of the tetrahedron, we forbid
the graph of some other platonic polyhedra? How ma-
ny edges can a graph without an octahedron (or cube,
or dodecahedron or icosahedron) have?

The platonic solids
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Erdős-Simonovits-Stone Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r ≥ 2 and t ≥ 1

ex(n, Trt,r) =

(

1 − 1

r − 1

)

(n

2

)

+ o(n2).

Corollary. (Erdős-Simonovits, 1966) For any graph
H,

ex(n, H) =

(

1 − 1

χ(H) − 1

)

(n

2

)

+ o(n2).

Corollaries of the Corollary.

ex(n, octahedron) =
n2

4
+ o(n2)

ex(n,dodecahedron) =
n2

4
+ o(n2)

ex(n, icosahedron) =
n2

3
+ o(n2)

ex(n, cube) = o(n2)

8



Proof of the Erdős-Simonovits Corollary

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r ≥ 2 and t ≥ 1

ex(n, Trt,r) =

(

1 − 1

r − 1

)

(n

2

)

+ o(n2).

Corollary. (Erdős-Simonovits, 1966) For any graph
H,

ex(n, H) =

(

1 − 1

χ(H) − 1

)

(n

2

)

+ o(n2).

Proof of the Corollary. Let r = χ(H).

• χ(Tn,r−1) < χ(H), so e(Tn,r−1)≤ ex(n, H).

• Trα,r ⊇ H, so ex(n, Trα,r)≥ ex(n, H), where α

is a constant depending on H; say α = α(H).

2
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The number of edges in a C4-free graph

Theorem (Erdős, 1938) ex(n, C4) = O(n3/2)

Proof. Let G be a C4-free graph on n vertices.

C = C(G) := number of K1,2 (“cherries”) in G.
Doublecount C.

Counting by the midpoint: Every vertex v is the mid-
point of exactly

(

d(v)
2

)

cherries. Hence

C =
∑

v∈V

(d(v)

2

)

.

Counting by the endpoints: Every pair {u, w} of verti-
ces form the endpoints of at most one cherry. (Other-
wise there is a C4 ⊆ G.) Hence

C ≤ 1 ·
(n

2

)

.
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Proof cont’d

Combine and apply Jensen’s inequality
(Note that x →

(

x
2

)

is a convex function)

(n

2

)

≥ C ≥
∑

v∈V

(d(v)

2

)

≥ n ·
(d̄(G)

2

)

.

d̄(G) = 1
n

∑

v∈V d(v) is the average degree of G.

n − 1

2
≥

(d̄(G)

2

)

≥ (d̄(G) − 1)2

2

Hence
√

n − 1 + 1 ≥ d̄(G). 2

Theorem (E. Klein, 1938) ex(n, C4) = Θ(n3/2)

Proof. Homework.

Theorem (Kővári-Sós-Turán, 1954) For s ≥ t ≥ 1

ex(n, Kt,s) ≤ csn
2−1

t

Proof. Homework.
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Open problems and Conjectures

Known results.

Ω(n3/2) ≤ ex(n, Q3) ≤ O(n8/5)

Ω(n9/8) ≤ ex(n, C8) ≤ O(n5/4)

Ω(n5/3) ≤ ex(n, K4,4) ≤ O(n7/4)

Conjectures.

ex(n, Kt,s) = Θ

(

n
2− 1

min{t,s}
)

true for t = 2,3 and s ≥ t

or t ≥ 4 and s > (t − 1)!

ex(n, C2k) = Θ

(

n1+1
k

)

true for k = 2,3 and 5

ex(n, Q3) = Θ

(

n
8
5

)

If H is a d-degenerate bipartite graph, then

ex(n, H) = O

(

n2−1
d

)

.
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