RECAP: Extremal problems — Examples____

Proposition 1. If G is an n-vertex graph with at most n-2 edges then G is disconnected.

A **Question** you always have to ask: Can we improve on this proposition?

Answer. NO! The same statement is FALSE with n-1 in the place of n-2. Proposition 1 is *best possible*, as shown by P_n .

Proposition 1. + P_n : The minimum value of e(G) over connected graphs is n - 1.

Proposition 2. If G is an n-vertex graph with at least n edges then G contains a cycle.

Remark. Proposition 2 is also *best possible*, (e.g. P_n).

Proposition 2. + Remark: The maximum value of e(G) over acyclic (i.e. cycle-free) graphs is n - 1.

Extremal problems — More example_____

Vague description: An extremal problem asks for the maximum or minimum value of a parameter over a class of objects (graphs, in most cases).

Proposition. *G* is an *n*-vertex graph with $\delta(G) \geq \lfloor n/2 \rfloor$, then *G* is connected.

Remark. The above proposition is *best possible*, as shown by $K_{\lfloor n/2 \rfloor} + K_{\lceil n/2 \rceil}$.

Graph G + H is the disjoint union (or sum) of graphs G and H. For an integer m, mG is the graph consisting of m disjoint copies of G.

Prop. + Remark: The maximum value of $\delta(G)$ over disconnected graphs is $\lfloor \frac{n}{2} \rfloor - 1$.

graph	graph	type of	value of
property	parameter	extremum	extremum
connected	e(G)	minimum	n-1
acyclic	e(G)	maximum	n-1
disconnected	$\delta(G)$	maximum	$\left\lfloor \frac{n}{2} ight floor - 1$
K ₃ -free	e(G)	maximum	$\left\lfloor \frac{n^2}{4} \right\rfloor$

Triangle-free subgraphs_____

Theorem. (Mantel, 1907) The maximum number of edges in an *n*-vertex triangle-free graph is $\lfloor \frac{n^2}{4} \rfloor$.

Proof.

- (*i*) There is a triangle-free graph with $\lfloor \frac{n^2}{4} \rfloor$ edges.
- (*ii*) If G is a triangle-free graph, then $e(G) \leq \lfloor \frac{n^2}{4} \rfloor$.

Proof of (ii) is with extremality. (Look at the neighborhood of a vertex of maximum degree.)

G is a complete *k*-partite graph if there is a partition $V_1 \cup \ldots V_k = V(G)$ of the vertex set, such that $uv \in E(G)$ iff *u* and *v* are in *different* parts of the partition. If $|V_i| = n_i$, then *G* is denoted by K_{n_1,\ldots,n_k} .

The Turán graph $T_{n,r}$ is the complete *r*-partite graph on *n* vertices whose partite sets differ in size by at most 1. (All partite sets have size $\lceil n/r \rceil$ or $\lfloor n/r \rfloor$.)

Lemma Among *r*-colorable graphs the Turán graph is the *unique* graph, which has the most number of edges.

Proof. Local change.	
----------------------	--

 \square

Turán's Theorem_

The Turán number ex(n, H) of a graph H is the largest integer m such that there exists an H-free* graph on n vertices with m edges.

Example: Mantel's Theorem states $ex(n, K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor$.

Theorem. (Turán, 1941)

$$ex(n, K_r) = e(T_{n,r-1}) = \left(1 - \frac{1}{r-1}\right) \binom{n}{2} + O(n).$$

Proof. Prove by induction on r that

 $G \not\supseteq K_r \implies$ there is an (r-1)-partite graph H with V(H) = V(G) and $e(H) \ge e(G)$.

Then apply the Lemma to finish the proof. \Box

*Here H-free means that there is no subgraph isomorphic to H

Turán-type problems_

Question. (Turán, 1941) What happens if instead of K_4 , which is the graph of the tetrahedron, we forbid the graph of some other platonic polyhedra? How many edges can a graph without an octahedron (or cube, or dodecahedron or icosahedron) have?

The platonic solids

Erdős-Simonovits-Stone Theorem_____

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \ge 2$ and $t \ge 1$

$$ex(n, T_{rt,r}) = \left(1 - \frac{1}{r-1}\right) \binom{n}{2} + o(n^2).$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$ex(n,H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2).$$

Corollaries of the Corollary.

$$ex(n, \text{octahedron}) = \frac{n^2}{4} + o(n^2)$$
$$ex(n, \text{dodecahedron}) = \frac{n^2}{4} + o(n^2)$$
$$ex(n, \text{icosahedron}) = \frac{n^2}{3} + o(n^2)$$
$$ex(n, \text{cube}) = o(n^2)$$

Proof of the Erdős-Simonovits Corollary____

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \ge 2$ and $t \ge 1$

$$ex(n, T_{rt,r}) = \left(1 - \frac{1}{r-1}\right) \binom{n}{2} + o(n^2).$$

Corollary. (Erdős-Simonovits, 1966) For any graph *H*,

$$ex(n,H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2).$$

Proof of the Corollary. Let $r = \chi(H)$.

- $\chi(T_{n,r-1}) < \chi(H)$, so $e(T_{n,r-1}) \leq ex(n,H)$.
- $T_{r\alpha,r} \supseteq H$, so $ex(n, T_{r\alpha,r}) \ge ex(n, H)$, where α is a constant depending on H; say $\alpha = \alpha(H)$.

	_

9

The number of edges in a C_4 -free graph_____

Theorem (Erdős, 1938) $ex(n, C_4) = O(n^{3/2})$

Proof. Let G be a C_4 -free graph on n vertices.

C = C(G) := number of $K_{1,2}$ ("cherries") in G. Doublecount C.

Counting by the midpoint: Every vertex v is the midpoint of exactly $\binom{d(v)}{2}$ cherries. Hence

$$C = \sum_{v \in V} {d(v) \choose 2}.$$

Counting by the endpoints: Every pair $\{u, w\}$ of vertices form the endpoints of at most one cherry. (Otherwise there is a $C_4 \subseteq G$.) Hence

$$C \leq 1 \cdot \binom{n}{2}.$$

10

Proof cont'd_____

Combine and apply Jensen's inequality (Note that $x \to \begin{pmatrix} x \\ 2 \end{pmatrix}$ is a convex function)

$$\binom{n}{2} \ge C \ge \sum_{v \in V} \binom{d(v)}{2} \ge n \cdot \binom{\overline{d}(G)}{2}.$$

 $\overline{d}(G) = \frac{1}{n} \sum_{v \in V} d(v)$ is the average degree of G.

$$\frac{n-1}{2} \geq {\overline{d}(G) \choose 2} \geq \frac{(\overline{d}(G)-1)^2}{2}$$

Hence $\sqrt{n-1} + 1 \ge \overline{d}(G)$.

Theorem (E. Klein, 1938) $ex(n, C_4) = \Theta(n^{3/2})$ *Proof.* Homework.

Theorem (Kővári-Sós-Turán, 1954) For $s \ge t \ge 1$ $ex(n, K_{t,s}) \le c_s n^{2-\frac{1}{t}}$

Proof. Homework.

11

Open problems and Conjectures_____

Known results.

$$\begin{aligned} \Omega(n^{3/2}) &\leq ex(n, Q_3) &\leq O(n^{8/5}) \\ \Omega(n^{9/8}) &\leq ex(n, C_8) &\leq O(n^{5/4}) \\ \Omega(n^{5/3}) &\leq ex(n, K_{4,4}) &\leq O(n^{7/4}) \end{aligned}$$

Conjectures.

$$ex(n, K_{t,s}) = \Theta\left(n^{2-\frac{1}{\min\{t,s\}}}\right) \text{ true for } t = 2, 3 \text{ and } s \ge t$$

or $t \ge 4 \text{ and } s > (t-1)!$
$$ex(n, C_{2k}) = \Theta\left(n^{1+\frac{1}{k}}\right) \qquad \text{true for } k = 2, 3 \text{ and } 5$$

$$ex(n, Q_3) = \Theta\left(n^{\frac{8}{5}}\right)$$

If H is a d-degenerate bipartite graph, then

$$ex(n,H) = O\left(n^{2-\frac{1}{d}}\right).$$