Flow network (D, c, s, t)
directed graph $D=(V, E) ; \quad|V|=n,|E|=m$, capacity $c: V \times V \rightarrow \mathbb{R}^{+} \cup\{0\}$, such that $c(u v)=0$ if $u v \notin E$ source s, sink t

Notation: ordered pair (u, v) is denoted by $u v$.
Assumption: for every vertex $v \in V$ there is an $s t$-path through v. Thus $m \geq n-1$.
$f: V \times V \rightarrow \mathbb{R}$ is a flow on the network (D, c, s, t) if it satisfies

1. Capacity constraint:

$$
f(u v) \leq c(u v) \text { for every } u, v \in V
$$

2. Skew symmetry:

$$
f(u v)=-f(v u) \text { for every } u, v \in V
$$

3. Flow conservation:

$$
\sum_{v \in V} f(u v)=0 \text { for every } u \in V \backslash\{s, t\}
$$

The MaxFlow problem

value of flow $f:|f|:=\sum_{v \in V} f(s v)$.
maximum flow of a network: a flow whose value is maximum over all flows of the network

The Problem

Given a flow network (D, c, s, t), find a maximum flow.

Further notation and basic properties

$$
f(X, Y):=\sum_{x \in X} \sum_{y \in Y} f(x y) .
$$

Examples: 1. Flow conservation property:

$$
f(\{u\}, V)=0 \text { for every } u \in V \backslash\{s, t\} .
$$

2. Value of flow $f:|f|=f(\{s\}, V)$

Lemma Let f be a skew-symmetric function. Then
(i) $f(X, X)=0$ for all $X \subseteq V$
(ii) $f(X, Y)=-f(Y, X)$ for all $X, Y \subseteq V$
(iii) $f(X \cup Y, Z)=f(X, Z)+f(Y, Z)$ and $f(Z, X \cup Y)=f(X, Z)+f(Y, Z)$ for all $X, Y, Z \subseteq V$ with $X \cap Y=\emptyset$

Claim $|f|=f(V, t)$
Proof: Use Lemma and flow conservation.

Residual network

residual network (D_{f}, c_{f}, s, t)
residual capacity $c_{f}(u v)=c(u v)-f(u v)$
residual digraph $D_{f}=\left(V, E_{f}\right)$

$$
\text { where } E_{f}=\left\{u v \in V \times V: c_{f}(u v)>0\right\}
$$

Remark Edges in E_{f} are either edges in E or their reversals. Hence $\left|E_{f}\right| \leq 2 m$.

Lemma Let f be a flow in the flow network D and let f^{\prime} be a flow in the residual flow network D_{f}. Then $f+f^{\prime}$ is a flow in D with value $|f|+\left|f^{\prime}\right|$.

Augmenting paths

An st-path P in D_{f} is called an augmenting path.
residual capacity of P :

$$
c_{f}(P)=\min \left\{c_{f}(u v): u v \text { is on } P\right\}
$$

Define

$$
f_{P}(u v):= \begin{cases}c_{f}(P) & \text { if } u v \text { is on } P \\ -c_{f}(P) & \text { if } v u \text { is on } P \\ 0 & \text { otherwise }\end{cases}
$$

Claim f_{P} is a flow in D_{f}.

Corollary

$f+f_{P}$ is a flow in D with value larger than $|f|$.

Ford-Fulkerson Method

Inititalization $f \equiv 0$
WHILE there exists an augmenting path P
DO augment flow f along P
return f

Running times:

- Basic (careless) Ford-Fulkerson: might not even terminate, flow value might not converge to maximum;
when capacities are integers, it terminates in time $O\left(m\left|f^{*}\right|\right)$, where f^{*} is a maximum flow.
- Edmonds-Karp: chooses a shortest augmenting path; runs in $O\left(\mathrm{~nm}^{2}\right)$

Example

Example of Zwick (1995)
Remark. The max fbw is 199. There is such an unfortunate choice of a sequence of augmenting paths, by which the fbw value tends to 3 . Even our implementation can be cheated to do this by introducing an extra vertex in the middle of each edge.

Cuts of fbw networks

\qquad
cut $[S, T]$ of a flow network (D, c, s, t) is a partition of V into S and T such that $s \in S$ and $t \in T$
capacity of cut $[S, T]: c(S, T)=\sum_{x \in S} \sum_{y \in T} c(x y)$
minimum cut of a network: the one whose capacity is minimum over all cuts of the network.

Lemma $f(S, T)=|f|$ for any cut $[S, T]$.
Corollary For any flow f and any cut $[S, T]$

$$
|f| \leq c(S, T)
$$

Max-flow/min-cut Theorem The following are equivalent.
(i) f is a maximum flow
(ii) D_{f} contains no augmenting paths.
(iii) $|f|=c(S, T)$ for some cut $[S, T]$.

Prefbw

f is a preflow if the following hold.

1. Capacity constraint:

$$
f(u v) \leq c(u v) \text { for every } u, v \in V
$$

2. Skew symmetry:

$$
f(u v)=-f(v u) \text { for every } u, v \in V
$$

3. Relaxed "flow conservation":

$$
f(V, u)=\sum_{v \in V} f(u v) \geq 0 \text { for every } u \in V \backslash\{s\}
$$

excess flow into $u: \quad e(u):=f(V, u)$
vertex $u \in V \backslash\{s, t\}$ is overflowing if $e(u)>0$
Lemma For any overflowing vertex u there is a uspath in the residual network D_{f}.
In particular, there is a residual outgoing edge from u.

Height function

$h: V \rightarrow I N$ is a height function for a preflow f if

- $h(s)=n$,
- $h(t)=0$,
- $h(u) \leq h(v)+1$ for every residual edge $u v \in E_{f}$

Lemma If f is a preflow which has a height function then there is no augmenting path in the residual network D_{f}.

Corollary If f is a flow which has a height function, then f is a maximum flow.

Lemma If f is a preflow with a height function h, then for any overflowing vertex u we have $h(u) \leq 2 n-1$.

Initialization

Every flow network (D, c, s, t) has a preflow with a height function:

INITIALIZE-PREFLOW (D, c, s, t)
FOR each pair $u v \in V \times V$
DO $f(u v):=0$
FOR each vertex $u \in N^{+}(s)$

$$
\begin{aligned}
\text { DO } f(s u) & :=c(s u) \\
f(u s) & :=-c(s u)
\end{aligned}
$$

FOR each vertex $u \in V$
DO $h(u):=0$
$h(s):=n$

Claim INITIALIZE-PREFLOW outputs a preflow f of (D, c, s, t) with a height function h.

The GENERIC-PUSH-RELABEL algorithm maintains a preflow with a height function while performing a series of basic operations (PUSHes and RELABELS) and eventually outputing a flow with a height function.

The PUSH operation

$\operatorname{PUSH}(u, v)$ is applicable if

- u is overflowing,
- $c_{f}(u v)>0$ (that is, $u v \in E_{f}$), and
- $h(u)=h(v)+1$

Action: $d_{f}(u v):=\min \left\{e(u), c_{f}(u v)\right\}$ amount of flow is "pushed from u to v ":

$$
\begin{aligned}
& f(u v):=f(u v)+d_{f}(u v) \\
& f(v u):=-f(u v)
\end{aligned}
$$

Remark: Preflow changes, height function does not.

1. saturating push: if $d_{f}(u v)=c_{f}(u v)$.

After a saturating push $u v$ becomes "saturated", i.e., $c_{f}(u v)$ becomes 0.
2. nonsaturating push: if $d_{f}(u v)=e(v)$.

After a nonsaturating push u is no longer overflowing.

The RELABEL operation

RELABEL (u) applies if

- u is overflowing and
- $h(u) \leq h(v)$ for all residual edges $u v \in E_{f}$.

Action: Define new height for u

$$
h(u):=1+\min \left\{h(v): u v \in E_{f}\right\}
$$

Remark: Minimum is well-defined, because u is overflowing, so there is an outgoing residual edge.

Remark: Height function changes, preflow does not.

Remark: s and t cannot be relabeled

The GENERIC-PUSH-RELABEL Algorithm

INITIALIZE-PREFLOW (D, c, s, t)
WHILE there exists an applicable push or relabel operation
DO select an applicable push or relabel operation and perform it

Correctness of the push-relabel method

Theorem If GENERIC-PUSH-RELABEL algorithm terminates then the preflow it computes is a maximum flow of the network D.

Proof:
Lemma If u is an overflowing vertex then either a push or a relabel operation applies to it.

Corollary At termination f is a flow.

Lemma h is maintained as a height function.
Proof:
Lemma During execution $h(u)$ never decreases

Termination and running time analysis

Lemma (Bound on RELABEL operations) The number of relabel operations is at most $2 n-1$ per vertex and at most $2 n^{2}$ overall.

Proof: Any time during execution $h(u) \leq 2 n-1$ for each vertex $u \in V$.

Lemma (Bound on saturating PUSHes) The number of saturating pushes is at most $2 n \mathrm{~m}$.

Proof: Between two saturating pushes from u to v the height of v increases by at least 2 .

Lemma (Bound on non-saturating pushes) The number of non-saturating pushes is at most $4 n^{2}(n+m)$. Proof: Estimate the change of the potential function $\Phi=$ $\sum_{v \in V, e(v)>0} h(v)$ during the three basic operations.

Theorem The number of basic operations for the GENERIC-PUSH-RELABEL algorithm is at most $O\left(n^{2} m\right)$.

Corollary There is an implementation of the GENERIC-PUSH-RELABEL algorithm which runs in $O\left(n^{2} m\right)$ on any flow network.

Admissable edges and admissable digraph

$u v$ is an admissable edge if

- $c_{f}(u v)>0$ and
- $h(u)=h(v)+1$

Admissable digraph: $D_{f, h}=\left(V, E_{f, h}\right)$, where $E_{f, h}$ is the set of admissable edges.

Lemma The admissable digraph is acyclic.
Observation If u is overflowing and $u v$ is an admissable edge then $\operatorname{PuSh}(u, v)$ applies.
PUSH (u, v) does not create any new admissable edges, but it may cause $u v$ to become inadmissable.

Observation If u is overflowing and there are no admissable edges leaving u, then RELABEL(u) applies. After Relabel (u) there is at least one admissable edge leaving u and there are no admissable edges entering u.

Notation

D is given by (non-cyclic) neighbor lists:
$N(u)$ is the neighbor list of u
v is on $N(u)$ if $u v$ or $v u \in E$
head $(N(u))$ points to the first vertex in $N(u)$ next-neighbor (v) points to the vertex following v in $N(u)$ next-neighbor $(v)=\mathrm{NIL}$ if v is the last vertex of $N(u)$ current(u) points to the neighbor u currently under consideration. Initially current(u) points to head($N(u)$).

Recall - Basic operations

$\operatorname{PUSH}(u, v)$ applies if
u is overflowing and $u v \in E_{f, h}$. Then
$d_{f}(u v):=\min \left\{e(u), c_{f}(u v)\right\}$
$f(u v):=f(u v)+d_{f}(u v)$
$f(v u):=-f(u v)$
$e(u):=e(u)-d_{f}(u v)$
$e(v):=e(v)+d_{f}(u v)$
$\operatorname{RELABEL}(u)$ applies if u is overflowing and $u v \notin E_{f, h}$ for all $v \in V$. Then
$h(u):=1+\min \left\{h(v): u v \in E_{f}\right\}$

Discharging a vertex

DISCHARGE (u)
1 WHILE $e(u)>0$
2 DO $v:=\operatorname{current}(u)$
$3 \quad$ IF $v=$ NIL
4
THEN RELABEL(u)
current $(u):=\operatorname{head}(N(u))$
6
ELSEIF $c_{f}(u, v)>0$ and $h(u)=h(v)+1$ THEN PUSH (u, v)
8
ELSE current(u) := next-neighbor (v)

Lemma (Algorithm DISCHARGE is well-defined)
When DISChARGE calls $\operatorname{PUSH}(u, v)$ then a push operation applies to $u v$.
When DISCHARGE calls RELABEL (u) then a relabel operation applies to u.

The RELABEL-TO-FRONT $(~ D, c, s, t)$ algorithm

```
\(1 f:=\operatorname{InITIALIZE-PREFLOW}(D, c, s, t)\)
\(2 L:=\) any order of \(V \backslash\{s, t\}\)
3 FOR each \(u \in V \backslash\{s, t\}\)
4 DO current \((u):=\) head( \(N(u)\) )
\(5 u:=\operatorname{head}(L)\)
6 WHILE \(u \neq\) NIL
7 DO old-height \(:=h(u)\)
8 DISCHARGE (u)
\(9 \quad\) IF \(h(u)>\) old-height
10 THEN move \(u\) to the front of the list \(L\)
\(11 \quad u:=\operatorname{next}(u)\)
```

Theorem (Correctness)
The RELABEL-TO-FRONT algorithm is an implementation of the GENERIC-PUSH-RELABEL algorithm.

Proof. At each test in line 6 of the algorithm the list L is a topological sort of the vertices of the admissable digraph $D_{f, h}$ and no vertex in the list before u has excess flow.

Running time analysis

Theorem The running time of RELABEL-TO-FRONT on any flow network is $O\left(n^{3}\right)$

Proof
"Phase": time between two relabel operations.

There are at most $O\left(n^{2}\right)$ relabel operations. Hence there are at most $O\left(n^{2}\right)$ phases.

Each phase consists of $\leq n$ calls to DISCHARGE Hence the total time of the WHILE loop excluding the work DISCHARGE does is $O\left(n^{3}\right)$.

Time spent during DISCHARGE

The $O\left(n^{2}\right)$ relabel operations can be done in $O(n m)$ (Homework)

Updating current(u) in line 8 of DISCHARGE occurs $O(\operatorname{deg}(u))$ times each time a vertex u is relabeled and $O(n \operatorname{deg}(u))$ times over for the vertex. All together the time is $O(\mathrm{~nm})$ (Handshaking Lemma).

The overall number of saturating pushes is $O(\mathrm{~nm})$

There is at most one non-saturating push per call to DISCHARGE
Hence the number of nonsaturating pushes is at most $O\left(n^{3}\right)$.

