
Flow network (D, c, s, t)

directed graph D = (V, E); |V | = n, |E| = m,
capacity c : V × V → IR+ ∪ {0},

such that c(uv) = 0 if uv /∈ E

source s, sink t

Notation: ordered pair (u, v) is denoted by uv.
Assumption: for every vertex v ∈ V there is an st-path
through v. Thus m ≥ n − 1.

f : V × V → IR is a flow on the network (D, c, s, t) if
it satisfies

1. Capacity constraint:

f(uv) ≤ c(uv) for every u, v ∈ V

2. Skew symmetry:

f(uv) = −f(vu) for every u, v ∈ V

3. Flow conservation:
∑

v∈V

f(uv) = 0 for every u ∈ V \ {s, t}

1

The MaxFlow problem

value of flow f : |f | := ∑

v∈V f(sv).

maximum flow of a network: a flow whose value is ma-
ximum over all flows of the network

The Problem
Given a flow network (D, c, s, t), find a maximum flow.

2

Further notation and basic properties

f(X, Y) :=
∑

x∈X

∑

y∈Y

f(xy).

Examples: 1. Flow conservation property:
f({u}, V) = 0 for every u ∈ V \ {s, t}.

2. Value of flow f : |f | = f({s}, V)

Lemma Let f be a skew-symmetric function. Then

(i) f(X, X) = 0 for all X ⊆ V

(ii) f(X, Y) = −f(Y, X) for all X, Y ⊆ V

(iii) f(X ∪ Y, Z) = f(X, Z) + f(Y, Z) and
f(Z, X ∪ Y) = f(X, Z) + f(Y, Z)

for all X, Y, Z ⊆ V with X ∩ Y = ∅

Claim |f | = f(V, t)

Proof: Use Lemma and flow conservation.

3

Residual network

residual network (Df , cf , s, t)

residual capacity cf(uv) = c(uv) − f(uv)

residual digraph Df = (V, Ef)

where Ef = {uv ∈ V × V : cf(uv) > 0}

Remark Edges in Ef are either edges in E or their
reversals. Hence |Ef | ≤ 2m.

Lemma Let f be a flow in the flow network D and
let f ′ be a flow in the residual flow network Df .
Then f + f ′ is a flow in D with value |f | + |f ′|.

4

Augmenting paths

An st-path P in Df is called an augmenting path.

residual capacity of P :

cf(P) = min{cf(uv) : uv is on P}

Define

fP (uv) :=

cf(P) if uv is on P

−cf(P) if vu is on P

0 otherwise

Claim fP is a flow in Df .

Corollary
f + fP is a flow in D with value larger than |f |.

5

Ford-Fulkerson Method

Inititalization f ≡ 0

WHILE there exists an augmenting path P

DO augment flow f along P

return f

Running times:

• Basic (careless) Ford-Fulkerson: might not even
terminate, flow value might not converge to maxi-
mum;
when capacities are integers, it terminates in time
O(m |f∗|), where f∗ is a maximum flow.

• Edmonds-Karp: chooses a shortest augmenting
path; runs in O(nm2)

6

Example

√
5−1
2

9999

9999

9999
1

1

Example of Zwick (1995)
Remark. The max flow is 199. There is such an unfortunate

choice of a sequence of augmenting paths, by which the flow

value tends to 3. Even our implementation can be cheated to do

this by introducing an extra vertex in the middle of each edge.

7

Cuts of flow networks

cut [S, T] of a flow network (D, c, s, t) is a partition of
V into S and T such that s ∈ S and t ∈ T

capacity of cut [S, T]: c(S, T) =
∑

x∈S
∑

y∈T c(xy)

minimum cut of a network: the one whose capacity is
minimum over all cuts of the network.

Lemma f(S, T) = |f | for any cut [S, T].

Corollary For any flow f and any cut [S, T]

|f | ≤ c(S, T).

Max-flow/min-cut Theorem The following are equi-
valent.

(i) f is a maximum flow

(ii) Df contains no augmenting paths.

(iii) |f | = c(S, T) for some cut [S, T].

8

Preflow

f is a preflow if the following hold.

1. Capacity constraint:

f(uv) ≤ c(uv) for every u, v ∈ V

2. Skew symmetry:

f(uv) = −f(vu) for every u, v ∈ V

3. Relaxed “flow conservation”:

f(V, u) =
∑

v∈V

f(uv) ≥ 0 for every u ∈ V \ {s}

excess flow into u: e(u) := f(V, u)

vertex u ∈ V \ {s, t} is overflowing if e(u) > 0

Lemma For any overflowing vertex u there is a us-
path in the residual network Df .
In particular, there is a residual outgoing edge from u.

9

Height function

h : V → IN is a height function for a preflow f if

• h(s) = n,

• h(t) = 0,

• h(u) ≤ h(v)+1 for every residual edge uv ∈ Ef

Lemma If f is a preflow which has a height function
then there is no augmenting path in the residual net-
work Df .

Corollary If f is a flow which has a height function,
then f is a maximum flow.

Lemma If f is a preflow with a height function h, then
for any overflowing vertex u we have h(u) ≤ 2n − 1.

10

Initialization

Every flow network (D, c, s, t) has a preflow with a
height function:

INITIALIZE-PREFLOW(D, c, s, t)

FOR each pair uv ∈ V × V

DO f(uv) := 0

FOR each vertex u ∈ N+(s)

DO f(su) := c(su)

f(us) := −c(su)

FOR each vertex u ∈ V

DO h(u) := 0

h(s) := n

Claim INITIALIZE-PREFLOW outputs a preflow f of
(D, c, s, t) with a height function h.

The GENERIC-PUSH-RELABEL algorithm maintains a
preflow with a height function while performing a se-
ries of basic operations (PUSHes and RELABELs) and
eventually outputing a flow with a height function.

11

The PUSH operation

PUSH(u, v) is applicable if

• u is overflowing,

• cf(uv) > 0 (that is, uv ∈ Ef), and

• h(u) = h(v) + 1

Action: df(uv) := min{e(u), cf(uv)} amount of
flow is “pushed from u to v”:

f(uv) := f(uv) + df(uv)

f(vu) := −f(uv)

Remark: Preflow changes, height function does not.

1. saturating push: if df(uv) = cf(uv).

After a saturating push uv becomes “saturated”, i.e.,
cf(uv) becomes 0.

2. nonsaturating push: if df(uv) = e(v).

After a nonsaturating push u is no longer overflowing.

12

The RELABEL operation

RELABEL(u) applies if

• u is overflowing and

• h(u) ≤ h(v) for all residual edges uv ∈ Ef .

Action: Define new height for u

h(u) := 1 + min{h(v) : uv ∈ Ef}

Remark: Minimum is well-defined, because u is over-
flowing, so there is an outgoing residual edge.

Remark: Height function changes, preflow does not.

Remark: s and t cannot be relabeled

13

The GENERIC-PUSH-RELABEL Algorithm

INITIALIZE-PREFLOW(D, c, s, t)

WHILE there exists an applicable push or relabel operation
DO select an applicable push or relabel operation

and perform it

14

Correctness of the push-relabel method

Theorem If GENERIC-PUSH-RELABEL algorithm ter-
minates then the preflow it computes is a maximum
flow of the network D.

Proof:
Lemma If u is an overflowing vertex then either a
push or a relabel operation applies to it.

Corollary At termination f is a flow.

Lemma h is maintained as a height function.
Proof:
Lemma During execution h(u) never decreases

15

Termination and running time analysis

Lemma (Bound on RELABEL operations) The number
of relabel operations is at most 2n− 1 per vertex and
at most 2n2 overall.

Proof: Any time during execution h(u) ≤ 2n − 1 for each
vertex u ∈ V .

Lemma (Bound on saturating PUSHes) The number of
saturating pushes is at most 2nm.

Proof: Between two saturating pushes from u to v the height
of v increases by at least 2.

Lemma (Bound on non-saturating PUSHes) The num-
ber of non-saturating pushes is at most 4n2(n + m).

Proof: Estimate the change of the potential function Φ =
∑

v∈V,e(v)>0 h(v) during the three basic operations.

Theorem The number of basic operations for the
GENERIC-PUSH-RELABEL algorithm is at most O(n2m).

Corollary There is an implementation of the
GENERIC-PUSH-RELABEL algorithm which runs
in O(n2m) on any flow network.

16

Admissable edges and admissable digraph

uv is an admissable edge if

• cf(uv) > 0 and

• h(u) = h(v) + 1

Admissable digraph: Df,h = (V, Ef,h), where Ef,h is
the set of admissable edges.

Lemma The admissable digraph is acyclic.

Observation If u is overflowing and uv is an admis-
sable edge then PUSH(u, v) applies.
PUSH(u, v) does not create any new admissable ed-
ges, but it may cause uv to become inadmissable.

Observation If u is overflowing and there are no ad-
missable edges leaving u, then RELABEL(u) applies.
After RELABEL(u) there is at least one admissable
edge leaving u and there are no admissable edges
entering u.

17

Notation

D is given by (non-cyclic) neighbor lists:
N(u) is the neighbor list of u

v is on N(u) if uv or vu ∈ E

head(N(u)) points to the first vertex in N(u)

next-neighbor(v) points to the vertex following v in
N(u)

next-neighbor(v) =NIL if v is the last vertex of N(u)

current(u) points to the neighbor u currently under
consideration. Initially current(u) points to head(N(u)).

18

Recall – Basic operations

PUSH(u, v) applies if
u is overflowing and uv ∈ Ef,h. Then

df(uv) := min{e(u), cf(uv)}
f(uv) := f(uv) + df(uv)

f(vu) := −f(uv)

e(u) := e(u) − df(uv)

e(v) := e(v) + df(uv)

RELABEL(u) applies if u is overflowing and uv 6∈ Ef,h

for all v ∈ V . Then

h(u) := 1 + min{h(v) : uv ∈ Ef}

19

Discharging a vertex

DISCHARGE(u)

1 WHILE e(u) > 0

2 DO v := current(u)
3 IF v = NIL

4 THEN RELABEL(u)
5 current(u) := head(N(u))
6 ELSEIF cf(u, v) > 0 and h(u) = h(v) + 1

7 THEN PUSH(u, v)

8 ELSE current(u) := next-neighbor(v)

Lemma (Algorithm DISCHARGE is well-defined)
When DISCHARGE calls PUSH(u, v) then a push ope-
ration applies to uv.
When DISCHARGE calls RELABEL(u) then a relabel
operation applies to u.

20

The RELABEL-TO-FRONT(D, c, s, t) algorithm

1 f := INITIALIZE-PREFLOW(D, c, s, t)

2 L := any order of V \ {s, t}
3 FOR each u ∈ V \ {s, t}
4 DO current(u) := head(N(u))
5 u := head(L)
6 WHILE u 6= NIL

7 DO old-height := h(u)

8 DISCHARGE(u)

9 IF h(u) > old-height
10 THEN move u to the front of the list L

11 u := next(u)

Theorem (Correctness)
The RELABEL-TO-FRONT algorithm is an implemen-
tation of the GENERIC-PUSH-RELABEL algorithm.

Proof. At each test in line 6 of the algorithm the list L

is a topological sort of the vertices of the admissable
digraph Df,h and no vertex in the list before u has
excess flow.

21

Running time analysis

Theorem The running time of RELABEL-TO-FRONT
on any flow network is O(n3)

Proof

“Phase”: time between two relabel operations.

There are at most O(n2) relabel operations.
Hence there are at most O(n2) phases.

Each phase consists of ≤ n calls to DISCHARGE

Hence the total time of the WHILE loop excluding the
work DISCHARGE does is O(n3).

22

Time spent during DISCHARGE

The O(n2) relabel operations can be done in O(nm)

(Homework)

Updating current(u) in line 8 of DISCHARGE occurs
O(deg(u)) times each time a vertex u is relabeled
and O(ndeg(u)) times over for the vertex. All to-
gether the time is O(nm) (Handshaking Lemma).

The overall number of saturating pushes is O(nm)

There is at most one non-saturating push per call to
DISCHARGE

Hence the number of nonsaturating pushes is at most
O(n3).

23

