RECALL: Vertex coloring, chromatic number

A k-coloring of a graph G isalabeling f : V(G) — S,
where | S| = k. The labels are called colors; the verti-
ces of one color form a color class.

A k-coloring is proper if adjacent vertices have diffe-
rent labels. A graph is k-colorable if it has a proper
k-coloring.

The chromatic number is
x(G) := min{k : G is k-colorable}.
A graph G is k-chromatic if x(G) = k. A proper k-

coloring of a k-chromatic graph is an optimal coloring.

Examples. Ky, Kn.m, Cs, Petersen



RECALL: Lower bounds

Simple lower bounds

x(G)
x(G)

Vv

w(G)
n(G)
a(G)

1V

Examples for x(G) #= w(G):
e 0dd cycles of length at least 5,

x(Cop+1) =3 > 2 =w(Coi41)

e complements of odd cycles of order at least 5,

x(Copt1) =k+1>k=w(Copt1)

e random graph G = G(n, 3), almost surely

x(G) =

> 210 ~ w(G
2logn gn ~w(@)



RECALL: Upper bounds

Proposition x(G) < A(G) + 1.

Proof. Algorithmic; Greedy coloring.

A graph G is d-degenerate if every subgraph of G has
minimum degree at most d.

Claim. GG is d-degenerate iff there is an ordering of the verti-
ces vi,...,vn, SUch that |[N(v;) N {v1,...,vi—1}| <d

Proposition. For a d-degenerate G, x(G) <d + 1.

In particular, for every G, x(G) < ?Caé 0(H) 4+ 1.

Proof. Greedy coloring.

Brooks’ Theorem. (1941) Let G be a connected graph.
Then x(G) = A(G) 4+ 1 iff G is a complete graph or
an odd cycle.

Proof. Trickier, but still greedy coloring...



Equitable colorings

Definition A coloring of G is equitable if it is proper
and the size of any two color classes differ by at most
one.

Applications Many...

Conjecture (Erdés, 1964) For each r > A(G), G
has an equitable (r 4 1)-coloring.

Remark Strengthening of the greedy coloring upper
bound x(G) < A(G) + 1.

Theorem (Hajnal-Szemerédi, 1970) For each
r > A(G), G has an equitable (r + 1)-coloring.

Proof. Complicated, long (22 pages).

Question Is there a polynomial time algorithm which,
given a graph G, finds an equitable (A(G) 4+ 1)-
coloring of G?

New (2006) proof by Kierstead and Kostochka comes
with a polynomial time algorithm.



Constructions, remarks, special cases

The theorem is best possible:
Let G = T K| for some integer [|n.
There is no proper (r + 1)-coloring if r = A(G) — 1.

Let n be even.
What does the HSz-Theorem says if A(G) < 5 —17?

There is an equitable 5-coloring of .
Or equivalently: In GG there is a perfect matching.

Special case 1 of HSZT:
6(H) > 5 = H has a perfect matching.

In fact, even more is true: Dirac’s Theorem:
6(H) > 5 = H has a Hamilton cycle!

Special case 2. (Corradi-Hajnal Theorem)
If 3|n and §(H) > 2%, then H has a K3-factor (a
family of triangles partitioning the vertex set).



Nearly equitable colorings

V()| = s(r 4+ 1), where r > A(G).

An (r + 1)-coloring f of GG is nearly equitable if it
Is proper and all classes have the same size s exept
one small class V— = V~(f) with size s— 1 and one
large class VT = VT (f) with size s + 1.

Let U and W be two distinct color classes of f. Vertex
y € U is movable to W if y has no neighbors in W.

Auxiliary digraph H = H(G, f).
V(H) = {U : U is acolor class of f}.
UW € E(H) if some vertex of U is movable to .

W is accessible if there isa WV ~-path in H.
Remark V ~ is accessible.

A = A(f) the family of accessible classes.



Accessible classes — how they can help____
A:=UA, B:=V(G)\A

Lemma 1 If G has a nearly equitable (4 1)-coloring
f whose large class V1 € A, then G has an equita-
ble (r + 1)-coloring.

Hence assume V1 ¢ A

m = |A|l -1

q .= r — m the number of non-accessible classes

Facts |[A|=(m+1)s—1
Bl =¢qs+1
y € B cannot be moved to A, so

ds(y) > m -+ 1, which implies dg(y) < g — 1.

Consequence Kicking out any vertex y from B leaves
us with a subgraph H = G[B\{y}] having gs vertices
and A(H) < g — 1. An invitation for induction!



Terminal classes

m > 1, since otherwise A =V —, so
rs+1<
Y. daly) = |E(A,B)] = ) dp(x)

yeB x€eA
<rlV7]|=r(s—1)

For W e Alet A\ {W} = Sy U 7Ty, where
Tw = {7 € A : every ZV ~-path goes through W'}.

U € Aisterminal if 7;; = 0, that is,
there isa ZV ~-path avoiding U for each Z € A\{U}.

U is non-terminal if 7;; # 0.

Remark V— is non-terminal
Sy- =10, Ty- = A\{V"}.

Fix a non-terminal class U € A and let A’ := 7.
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Solo vertices

t:= A, A == uA

r € A’ = x is not movable to any class in A\ A’\ {U}
= dg(x) >m—t

zy IS a solo edge and z and y are solo vertices if

Remark: y is movable to W \ {z}.

S, :={y € B : zyis asolo edge}

SY .= {z¢e A’ : zyis asolo edge}

Claimye B= |SY|>t—q+ 1+ dg(y).

Proof: t—|SY | <|{Ze€ A:|ZNN(y)| > 2}
<r—dp(y) —(m+1)



Lemmas

Lemma 2 If there exists W & A’ such that no solo
vertex in W is movable to a class in A \ {W} then
qg + 1 < t. Furthermore, every vertex of B is solo.

Remark: For any solo vertex z € W thereisay € B
which we could move to W — should we be able to
get rid of z by moving it further. Lemma 2 discusses
the “bad case”, when this is not possible for any solo
vertex z.

Lemma 3 Let W € A’. Then 3 a solo vertex z €¢ W

such that either z is movable to a class in A\ {W}
or S, is not a clique.
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Proof of Lemma 2

Lemma 2 If there exists W & A’ such that no solo
vertex in W is movable to a class in A \ {W} then
qg + 1 < t. Furthermore, every vertex of B is solo.

Proof. Doublecount |E(W, B)].
S C W set of solo verticesin W, D =W \ S.

No z € Sismovableto A\ {W} = ds(z) >m
= dp(z) < ¢
No z € D is movable to A\ A'\{U} = dg(z) < g+t

INg(S)|+2(|B| — |[Ng(S)]) < |E(W, B)|
< q|S|+ (t+ ¢)|D|
2(gs+ 1) —q|S| < gs+t|D|

2
g+ -— < ¢t
| D|

By Claim |SY| >t —q+ 1+ dg(y) > 2. -

11




Proof of Lemma 3

Lemma 3 Let W € A’. Then 3 a solo vertex z € W
such that either z is movable to a class in A\ {W}
or S is not a clique.

Proof. Suppose the statement is false.
Lemma2 = Vy € Bissoloandt —q > 1.
Syisaclique = Vy € S,,dg(y) + 1 > |S:|.*

- if xy is solo

pzy) = { |5l

o) otherwise
Doublecount p(A’, B) = 3. c 4/ Xy e B 1n(zy).

>, 2 mnly) = |5 |gz| < gst.

zcA'yeB solo z € A’

> 3 u) = ¥y >y st

yeB xec A’ yeB z€S yEB
> > (t—q+ Cy)_
yeB

> Zt=t|B|=t(qs—|—1)

yeB
“cy = max{|S.|: z € $¥} <dp(y) +1<¢q
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Proof of the Hajnal-Szemerédi Theorem_

Theorem (Hajnal-Szemerédi, 1970) For each
r > A(G), G has an equitable (r + 1)-coloring.

Proof:

WLOG n = s(r 4+ 1). Let G be a counterexample on
n vertices with the smallest number of edges.

Consequence: For arbitrary edge e = zy € E(G),

e there is an equitable (r 4+ 1)-coloring fo of G —e¢

e = and y must be in the same color class V' of fj.

d(x) <r = dclass W # V, x is movable to .
= danearly equitable (» 4+ 1)-coloring of G.

Let f be a nearly equitable (r+ 1)-coloring of G such
that the number ¢ = ¢(f) of nonaccessible classes is
minimal.

L1 = VT ¢&A=A(f)
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Proof of Hajnal-Szemerédi Theorem — cont'd

Fix non-terminal class U € A with 7;; =: A’ minimal.

Recall: A" £ 0
Minimality = every classin A’ is terminal

L3 = Jclass W € A/, a solo vertex z € W and
a vertex y1 € S such that

e either z ismovabletoaclass X € A\ {W}

e Or z IS not movable in A and there exists another
vertex yo> € S, which is not incident to y .

Recal A=UA, B=V(G)\A
AT :=AU{y}, B~ =B\ {y1}

Recall: there exists an equitable g-coloring g of G[B ]
(dp(y) < qg—1,Vy € B = induction applies)
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Proof of Hajnal-Szemerédi Theorem — Cases

Case 1. zis movableto X € A.

W is terminal = 4 XV~ -path in H avoiding W.
Move vertices along this path, z to X, y1 to W \ {z}
This creates an equitable m+ 1-coloring ¢’ of G[AT].
Then ¢’ U g is an equitable (» 4+ 1)-coloring of G,

a contradiction.

Case 2. z is not movable to any class in A.

Then dp-(2) < ¢ — 1 and z can be moved into a
color class Y C B~ of g. This defines an equitable
g-coloring ¢’ of G on B* = B~ U {z}
Move y1 to W \ {z} to obtain an equitable (m + 1)-
coloring ¢ of G on A* =V (G) \ B*.
' =1 U g’ is a nearly equitable » + 1-coloring of G.

A* C A(¢") and the class of y> is now accessible!
(since yo ismovableto W* =W U {y1} \ {z})
Thus g(0") < q(f), a contradiction. O
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Fast equitable coloring

Algorithm Equi Col or (G, r) (Kostochka-Kierstead, 2006)
Input. graph G, integer r > A(G)
Output. equitable (r 4+ 1)-coloring of G

V(G) =Av1,...,on},n=s(r+1)—p
Fori,0 <i<n,letG; C G, V(G;) = V(G),
E(G;) = {ay : wory =vj,j < i}
IF p 7= O THEN
output Equi Col or (G + Kp, )|y (@)
ELSE
1 .= 0, fo := arbitrary equitable r-coloring of GG
WHILE: <n—1D0i:=i+4+ 1
IF v; has no G-neighbors in its f;_1-color class THEN
fi = fi—1
ELSE Define f/_; from f;_1 by moving v; to
a f;_1-color class that has no GG-neighbors of v,
fi := Equitizer(Gy, f/_;)
output f,,_1.

Theorem. Equi Col or (G, r) outputs a nearly equita-
ble (r 4+ 1)-coloring of G in time O(n>).
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Algorithm Equi ti zer (G, f)

Input graph G onn := s(r+ 1) vertices, A(G) < r;
nearly equitable (r 4+ 1)-coloring f of G

Output equitable (» + 1)-coloring f/ of G

Construct auxiliary digraph H = H(f)
IF VT € ATHEN
f' := recoloring of f by moving vertices
along a V*tV—-pathin H
ELSE
Construct A, A’, B, W, z,y7 as in the proof
g = Equitizer(G[B7], f|lg-)
IF z is movable to an X € A (i.e., Case 1) THEN
construct ©’; fli=¢'Ug
ELSE (i.e., Case 2)
find y € S, suchthat y1y> ¢ E
construct g’ on B* and ¢ on A*
construct nearly equitable ¢’ := 1 U ¢’
f! := Equitizer(G,¢’) [choose A'(y') C B(f)]
output f’
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Running time

Theorem. There exists a constant ¢ such that algo-
rithm Equi ti zer (G, f) outputs an equitable (4 1)-
coloring of G in time ¢(q + 1)n3, where ¢ = ¢(f) is
the number of non-accesible classes of f.

Corollary. Algorithm Equi Col or (G, r) constructs an
equitable (r 4 1)-coloring of graph G in time O(n>).
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Running time analysis

Proof of Theorem. Termination of Equitizer is clear.
R(G, f) :=runtime of Equitizer(G, f)
R(n,q) = max{R(G, f) : [V(G)| =n, q(f) < ¢}

Let c be a constant such that all of the lines of Equitizer
not calling itself recursively (i.e. recolorings, searches,
constructions, case-determinations) can be performed
in time $n3.

Induction on g = q(f):
gq=0 = VT e Adand R(n,0) < en3.

Assume q > 0O

If Case 1 happens:
R(n,q) < 5n3+ R(|B7|,q — 1) < cn3 4 cqn’
<c(q+ 1)n3
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Running time analysis — cont'd

If Case 2 happens: q(¥') < g and
R(n,q) < 5n3+ R(|B~|,q — 1) + R(G,¢)

Case2 = L2 = ¢g+1<t = |B7|
jR(IB_I,q—l)ch(

I
WNIS

)

NS

Using R(G, ¢") < cgn3 would not suffice.
We go one deeper into the algorithm.

If, after Case 2, Case 1 happens:
Because |B— (¢')| < |B~(f)|, we have

R(G,v") < 5n3 + R(IB~ ("), ¢(¥"))
< §n3 + cq (%)3

If, after Case 2, Case 2 happens again:

A' (W) CB(f) = q(@)+t(¥") <q(f)

12 = q()+1<t(y) = q) < L)L

R(G,%") < R(n,q/2) < c1E1n3
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