
RECALL: Vertex coloring, chromatic number

A k-coloring of a graphG is a labeling f : V (G) → S,
where |S| = k. The labels are called colors; the verti-
ces of one color form a color class.

A k-coloring is proper if adjacent vertices have diffe-
rent labels. A graph is k-colorable if it has a proper
k-coloring.

The chromatic number is

χ(G) := min{k : G is k-colorable}.

A graph G is k-chromatic if χ(G) = k. A proper k-
coloring of a k-chromatic graph is an optimal coloring.

Examples. Kn, Kn,m, C5, Petersen
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RECALL: Lower bounds

Simple lower bounds

χ(G) ≥ ω(G)

χ(G) ≥
n(G)

α(G)

Examples for χ(G) 6= ω(G):

• odd cycles of length at least 5,

χ(C2k+1) = 3 > 2 = ω(C2k+1)

• complements of odd cycles of order at least 5,

χ(C2k+1) = k+ 1 > k = ω(C2k+1)

• random graph G = G(n, 12), almost surely

χ(G) ≈
n

2 logn
> 2 logn ≈ ω(G)
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RECALL: Upper bounds

Proposition χ(G) ≤ ∆(G) + 1.

Proof. Algorithmic; Greedy coloring.

A graph G is d-degenerate if every subgraph of G has
minimum degree at most d.

Claim. G is d-degenerate iff there is an ordering of the verti-
ces v1, . . . , vn, such that |N(vi) ∩ {v1, . . . , vi−1}| ≤ d

Proposition. For a d-degenerate G, χ(G)≤ d+ 1.
In particular, for every G, χ(G)≤max

H⊆G
δ(H) + 1.

Proof. Greedy coloring.

Brooks’ Theorem. (1941) LetG be a connected graph.
Then χ(G) = ∆(G)+1 iff G is a complete graph or
an odd cycle.

Proof. Trickier, but still greedy coloring...
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Equitable colorings

Definition A coloring of G is equitable if it is proper
and the size of any two color classes differ by at most
one.

Applications Many...

Conjecture (Erdős, 1964) For each r ≥ ∆(G), G
has an equitable (r+ 1)-coloring.

Remark Strengthening of the greedy coloring upper
bound χ(G) ≤ ∆(G) + 1.

Theorem (Hajnal-Szemerédi, 1970) For each
r ≥ ∆(G), G has an equitable (r+ 1)-coloring.

Proof. Complicated, long (22 pages).

Question Is there a polynomial time algorithm which,
given a graph G, finds an equitable (∆(G) + 1)-
coloring of G?

New (2006) proof by Kierstead and Kostochka comes
with a polynomial time algorithm.
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Constructions, remarks, special cases

The theorem is best possible:
Let G = n

lKl for some integer l|n.
There is no proper (r+1)-coloring if r = ∆(G)−1.

Let n be even.
What does the HSz-Theorem says if ∆(G) ≤ n

2 − 1?

There is an equitable n
2-coloring of G.

Or equivalently: In Ḡ there is a perfect matching.

Special case 1 of HSzT:
δ(H) ≥ n

2 ⇒ H has a perfect matching.

In fact, even more is true: Dirac’s Theorem:
δ(H) ≥ n

2 ⇒ H has a Hamilton cycle!

Special case 2. (Corrádi-Hajnal Theorem)
If 3|n and δ(H) ≥ 2n

3 , then H has a K3-factor (a
family of triangles partitioning the vertex set).
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Nearly equitable colorings

|V (G)| = s(r+ 1), where r ≥ ∆(G).

An (r + 1)-coloring f of G is nearly equitable if it
is proper and all classes have the same size s exept
one small class V − = V −(f) with size s−1 and one
large class V+ = V+(f) with size s+ 1.

Let U and W be two distinct color classes of f . Vertex
y ∈ U is movable to W if y has no neighbors in W .

Auxiliary digraph H = H(G, f).
V (H) = {U : U is a color class of f}.
UW ∈ E(H) if some vertex of U is movable to W .

W is accessible if there is a WV −-path in H.
Remark V − is accessible.

A = A(f) the family of accessible classes.
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Accessible classes — how they can help

A := ∪A, B := V (G) \A

Lemma 1 If G has a nearly equitable (r+1)-coloring
f whose large class V + ∈ A, then G has an equita-
ble (r+ 1)-coloring.

Hence assume V + 6∈ A

m := |A| − 1

q := r −m the number of non-accessible classes

Facts |A| = (m+ 1)s− 1

|B| = qs+ 1

y ∈ B cannot be moved to A, so
dA(y) ≥ m+1, which implies dB(y) ≤ q− 1.

Consequence Kicking out any vertex y fromB leaves
us with a subgraphH = G[B\{y}] having qs vertices
and ∆(H) ≤ q − 1. An invitation for induction!
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Terminal classes

m ≥ 1, since otherwise A = V −, so

rs+ 1 ≤
∑

y∈B

dA(y) = |E(A,B)| =
∑

x∈A

dB(x)

≤ r|V −| = r(s− 1)

For W ∈ A let A \ {W} = SW ∪ TW , where

TW = {Z ∈ A : every ZV −-path goes through W}.

U ∈ A is terminal if TU = ∅, that is,
there is a ZV −-path avoiding U for each Z ∈ A\{U}.

U is non-terminal if TU 6= ∅.

Remark V − is non-terminal
SV − = ∅, TV − = A \ {V −}.

Fix a non-terminal class U ∈ A and let A′ := TU .
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Solo vertices

t := |A′|, A′ := ∪A′

x ∈ A′ ⇒ x is not movable to any class in A\A′\{U}

⇒ dA(x) ≥ m− t

zy is a solo edge and z and y are solo vertices if

• y ∈ B

• z ∈W ∈ A′

• NW (y) = {z}

Remark: y is movable to W \ {z}.

Sz := {y ∈ B : zy is a solo edge}

Sy := {z ∈ A′ : zy is a solo edge}

Claim y ∈ B ⇒ |Sy| ≥ t− q+ 1 + dB(y).

Proof: t− |Sy| ≤ |{Z ∈ A : |Z ∩N(y)| ≥ 2}|

≤ r − dB(y) − (m+ 1)
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Lemmas

Lemma 2 If there exists W ∈ A′ such that no solo
vertex in W is movable to a class in A \ {W} then
q+ 1 ≤ t. Furthermore, every vertex of B is solo.

Remark: For any solo vertex z ∈ W there is a y ∈ B

which we could move to W — should we be able to
get rid of z by moving it further. Lemma 2 discusses
the “bad case”, when this is not possible for any solo
vertex z.

Lemma 3 Let W ∈ A′. Then ∃ a solo vertex z ∈ W

such that either z is movable to a class in A \ {W}

or Sz is not a clique.
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Proof of Lemma 2

Lemma 2 If there exists W ∈ A′ such that no solo
vertex in W is movable to a class in A \ {W} then
q+ 1 ≤ t. Furthermore, every vertex of B is solo.

Proof. Doublecount |E(W,B)|.

S ⊆W set of solo vertices in W , D = W \ S.

No z ∈ S is movable to A \ {W} ⇒ dA(z) ≥ m

⇒ dB(z) ≤ q

No z ∈ D is movable to A\A′\{U}⇒ dB(z) ≤ q+t

|NB(S)| + 2(|B| − |NB(S)|) ≤ |E(W,B)|

≤ q|S| + (t+ q)|D|

2(qs+ 1) − q|S| ≤ qs+ t|D|

q +
2

|D|
≤ t

By Claim |Sy| ≥ t− q + 1 + dB(y) ≥ 2.
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Proof of Lemma 3

Lemma 3 Let W ∈ A′. Then ∃ a solo vertex z ∈ W
such that either z is movable to a class in A \ {W}

or Sz is not a clique.

Proof. Suppose the statement is false.
Lemma 2 ⇒ ∀y ∈ B is solo and t− q ≥ 1.
Sz is a clique ⇒ ∀y ∈ Sz, dB(y) + 1 ≥ |Sz|.∗

µ(xy) =

{ q
|Sx|

if xy is solo

0 otherwise

Doublecount µ(A′, B) =
∑

x∈A′
∑

y∈B µ(xy).
∑

x∈A′

∑

y∈B

µ(xy) =
∑

solo z ∈ A′

|Sz| ·
q

|Sz|
≤ qst.

∑

y∈B

∑

x∈A′

µ(xy) =
∑

y∈B

∑

z∈Sy

q

|Sz|
≥

∑

y∈B

|Sy|
q

cy

≥
∑

y∈B

(t− q + cy)
q

cy

≥
∑

y∈B

t = t|B| = t(qs+ 1)

∗cy = max{|Sz| : z ∈ Sy} ≤ dB(y) + 1 ≤ q
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Proof of the Hajnal-Szemerédi Theorem

Theorem (Hajnal-Szemerédi, 1970) For each
r ≥ ∆(G), G has an equitable (r+ 1)-coloring.

Proof:

WLOG n = s(r+ 1). Let G be a counterexample on
n vertices with the smallest number of edges.

Consequence: For arbitrary edge e = xy ∈ E(G),

• there is an equitable (r+1)-coloring f0 of G− e

• x and y must be in the same color class V of f0.

d(x) ≤ r ⇒ ∃ class W 6= V , x is movable to W .
⇒ ∃ a nearly equitable (r+ 1)-coloring of G.

Let f be a nearly equitable (r+1)-coloring ofG such
that the number q = q(f) of nonaccessible classes is
minimal.

L1 ⇒ V+ /∈ A = A(f)
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Proof of Hajnal-Szemerédi Theorem – cont’d

Fix non-terminal class U ∈ A with TU =: A′ minimal.
Recall: A′ 6= ∅

Minimality ⇒ every class in A′ is terminal

L3 ⇒ ∃ class W ∈ A′, a solo vertex z ∈W and
a vertex y1 ∈ Sz such that

• either z is movable to a class X ∈ A \ {W}

• or z is not movable in A and there exists another
vertex y2 ∈ Sz which is not incident to y1.

Recall A = ∪A, B = V (G) \A

A+ := A ∪ {y1}, B− := B \ {y1}

Recall: there exists an equitable q-coloring g ofG[B−]

(dB(y) ≤ q−1, ∀y ∈ B ⇒ induction applies)

14



Proof of Hajnal-Szemerédi Theorem – Cases

Case 1. z is movable to X ∈ A.

W is terminal ⇒ ∃ XV −-path in H avoiding W .
Move vertices along this path, z to X, y1 to W \ {z}

This creates an equitablem+1-coloring ϕ′ ofG[A+].
Then ϕ′ ∪ g is an equitable (r+ 1)-coloring of G,
a contradiction.

Case 2. z is not movable to any class in A.

Then dB−(z) ≤ q − 1 and z can be moved into a
color class Y ⊆ B− of g. This defines an equitable
q-coloring g′ of G on B∗ = B− ∪ {z}

Move y1 to W \ {z} to obtain an equitable (m+ 1)-
coloring ψ of G on A∗ = V (G) \B∗.
ψ′ := ψ∪ g′ is a nearly equitable r+1-coloring of G.

A∗ ⊆ A(ψ′) and the class of y2 is now accessible!
(since y2 is movable to W ∗ = W ∪ {y1} \ {z})

Thus q(ψ′) < q(f), a contradiction. 2
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Fast equitable coloring

Algorithm EquiColor(G, r) (Kostochka-Kierstead, 2006)

Input. graph G, integer r ≥ ∆(G)

Output. equitable (r+ 1)-coloring of G

V (G) = {v1, . . . , vn}, n = s(r+ 1) − p
For i,0 ≤ i < n, let Gi ⊆ G, V (Gi) = V (G),

E(Gi) = {xy : x or y = vj, j ≤ i}

IF p 6= 0 THEN

output EquiColor(G+Kp, r)|V (G)
ELSE

i := 0, f0 := arbitrary equitable r-coloring of G0
WHILE i < n− 1 DO i := i+ 1

IF vi has no G-neighbors in its fi−1-color class THEN

fi := fi−1
ELSE Define f ′i−1 from fi−1 by moving vi to

a fi−1-color class that has no G-neighbors of vi
fi := Equitizer(Gi, f

′
i−1)

output fn−1.

Theorem. EquiColor(G, r) outputs a nearly equita-
ble (r+ 1)-coloring of G in time O(n5).
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Algorithm Equitizer(G, f )

Input graph G on n := s(r+1) vertices, ∆(G) ≤ r;
nearly equitable (r+ 1)-coloring f of G

Output equitable (r+ 1)-coloring f ′ of G

Construct auxiliary digraph H = H(f)

IF V+ ∈ A THEN

f ′ := recoloring of f by moving vertices
along a V +V −-path in H

ELSE

Construct A,A′, B,W, z, y1 as in the proof
g := Equitizer(G[B−], f |B−)

IF z is movable to an X ∈ A (i.e., Case 1) THEN

construct ϕ′; f ′ := ϕ′ ∪ g

ELSE (i.e., Case 2)
find y2 ∈ Sz such that y1y2 /∈ E

construct g′ on B∗ and φ on A∗

construct nearly equitable ψ′ := ψ ∪ g′

f ′ := Equitizer(G,ψ′) [choose A′(ψ′) ⊆ B(f)]
output f ′
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Running time

Theorem. There exists a constant c such that algo-
rithm Equitizer(G, f ) outputs an equitable (r+1)-
coloring of G in time c(q + 1)n3, where q = q(f) is
the number of non-accesible classes of f .

Corollary. Algorithm EquiColor(G, r) constructs an
equitable (r+ 1)-coloring of graph G in time O(n5).
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Running time analysis

Proof of Theorem. Termination of Equitizer is clear.

R(G, f) := runtime of Equitizer(G, f)
R(n, q) := max{R(G, f) : |V (G)| = n, q(f) ≤ q}

Let c be a constant such that all of the lines of Equitizer
not calling itself recursively (i.e. recolorings, searches,
constructions, case-determinations) can be performed
in time c

2n
3.

Induction on q = q(f):

q = 0 ⇒ V+ ∈ A and R(n,0) ≤ cn3.

Assume q > 0

If Case 1 happens:

R(n, q) ≤ c
2n

3 +R(|B−|, q − 1) ≤ cn3 + cqn3

≤ c(q + 1)n3
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Running time analysis — cont’d

If Case 2 happens: q(ψ′) < q and

R(n, q) ≤ c
2n

3 +R(|B−|, q − 1) +R(G,ψ′)

Case 2 ⇒ L2 ⇒ q+ 1 ≤ t ⇒ |B−| ≤ n
2

⇒ R(|B−|, q − 1) ≤ cq
(

n
2

)3

Using R(G,ψ′) ≤ cqn3 would not suffice.
We go one deeper into the algorithm.

If, after Case 2, Case 1 happens:

Because |B−(ψ′)| ≤ |B−(f)|, we have

R(G,ψ′) ≤ c
2n

3 +R(|B−(ψ′)|, q(ψ′))

≤ c
2n

3 + cq
(

n
2

)3

If, after Case 2, Case 2 happens again:

A′(ψ′) ⊆ B(f) ⇒ q(ψ′) + t(ψ′) ≤ q(f)

L2 ⇒ q(ψ′) + 1 ≤ t(ψ′) ⇒ q(ψ′) ≤ q(f)−1
2 .

R(G,ψ′) ≤ R(n, q/2) ≤ cq+1
2 n3

2
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