
When is a graph planar?

Theorem(Euler, 1758) If a plane multigraph G with
k components has n vertices, e edges, and f faces,
then

n − e + f = 1 + k.

Corollary If G is a simple, planar graph with n(G) ≥

3, then e(G) ≤ 3n(G) − 6.
If also G is triangle-free, then e(G) ≤ 2n(G) − 4.

Corollary K5 and K3,3 are non-planar.

The subdivision of edge e = xy is the replacment
of e with a new vertex z and two new edges xz and
zy. The graph H ′ is a subdivision of H, if one can
obtain H ′ from H by a series of edge subdivisions.
Vertices of H ′ with degree at least three are called
branch vertices.

Theorem(Kuratowski, 1930) A graph G is planar iff G

does not contain a subdivision of K5 or K3,3.
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Kuratowski’s Theorem

Theorem(Kuratowski, 1930) A graph G is planar iff G

does not contain a subdivision of K5 or K3,3.

Proof.
A Kuratowski subgraph of G is a subgraph of G that
is a subdivision of K5 or K3,3. A minimal nonplanar
graph is a nonplanar graph such that every proper
subgraph is planar.

A counterexample to Kuratowski’s Theorem constitu-
tes a nonplanar graph that does not contain any Ku-
ratowski subgraph.

Kuratowski’s Theorem follows from the following Main
Lemma and Theorem.
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The spine of the proof

Main Lemma. If G is a graph with fewest edges among
counterexamples, then G is 3-connected.

Lemma 1. Every minimal nonplanar graph is 2-connected.

Lemma 2. Let S = {x, y} be a separating set of G. If G is a
nonplanar graph, then adding the edge xy to some S-lobe of
G yields a nonplanar graph.

Main Theorem.(Tutte, 1960) If G is a 3-connected
graph with no Kuratowski subgraph, then G has a con-
vex embedding in the plane with no three vertices on
a line.

A convex embedding of a graph is a planar embedding in
which each face boundary is a convex polygon.

Lemma 3. If G is a 3-connected graph with n(G) ≥ 5,
then there is an edge e ∈ E(G) such that G·e is 3-connected.

Notation: G ·e denotes the graph obtained from G after the
contraction of edge e.

Lemma 4. G has no Kuratowski subgraph ⇒ G · e has no
Kuratowski subgraph.

3



Proof of Tutte’s Theorem

Main Theorem. (Tutte, 1960) If G is a 3-connected
graph with no Kuratowski subgraph, then G has a con-
vex embedding in the plane with no three vertices on
a line.

Proof. Induction on n(G).
Base case: G is 3-connected, n(G) = 4 ⇒ K4.

Let e ∈ E s.t. H = G · e is 3-connected. (Lemma 3)
Then H has no Kuratowski subgraph. (Lemma 4)
Induction ⇒ H has a convex embedding in the plane
with no three vertices on a line.

Let z ∈ V (H) be the contracted e.
H − z is 2-connected ⇒ boundary of the face contai-
ning z after the deletion of the edges incident to z is a
cycle C.
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Let x0, . . . , xk−1 be the neighbors of x on C in cyclic
order. Note that |N(x)| ≥ 3 and hence k ≥ 2.

Denote by 〈xi, xi+1〉 the portion of C from xi to xi+1
(including endpoints; indices taken modulo k).

Let Nx = N(x) \ {y} and Ny = N(y) \ {x}.

Case 1. |Nx ∩ Ny| ≥ 3.

Let u, v, w ∈ Nx ∩Ny. Then x, y, u, v, w are the branch verti-
ces of a K5-subdivision in G.

Case 2. |Nx ∩ Ny| ≤ 2.

Since |Nx ∪ Ny| ≥ 3, there is w.l.o.g. a vertex
u ∈ Ny \ Nx. Let i be such that u is on 〈xi, xi+1〉.

Case 2a. Ny is contained in 〈xi, xi+1〉.
Then there is an appropriate embedding of G: Placing x in
place of z and y sufficiently close to x maintains convexity.
(No three vertices are collinear; |N(x)|, |N(y)| ≥ 3.)

Case 2b. For every i there is a vertex in Ny that is
not in 〈xi, xi+1〉.

Then there must be a v ∈ Ny that is not on 〈xi, xi+1〉
and x, y, xi, xi+1, u, v are the branch vertices of a K3,3-
subdivision in G.



Proof of the Lemmas

Lemma 3. G is 3-connected, n(G) ≥ 5 ⇒ there is
an edge e ∈ E(G) such that G · e is 3-connected.

Proof. Suppose G is 3-connected and for every e ∈ E,
G · e is NOT 3-connected.

For edge e = xy, the vertex z is the mate of xy if
{x, y, z} is a cut in G.

Choose e = xy and their mate z such that G−{x, y, z}

has a component H, whose order is as large as pos-
sible.

Let H ′ be another component of G − {x, y, z} and let
u ∈ V (H ′) be the neighbor of z (There IS one!). Let
v be the mate of uz.

V (H) ∪ {x, y} \ {v} is connected in G − {z, u, v}

contradicting the maximality of H. 2
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Lemma 4. G has no Kuratowski subgraph ⇒ G ·e has
no Kuratowski subgraph.

Proof. Suppose G · e contains a Kuratowski subgraph
H. Then

• z ∈ V (H)

• z is a branchvertex of H

• |NH(z)| = 4 and |NH(z) ∩ NG(x)|, |NH(z) ∩

NG(y)| ≥ 2

Then H is the subdivision of K5 ⇒ G contains a su-
division of K3,3, a contradiction. 2



Minors

K7 is a toroidal graph (it is embeddable on the torus),
K8 is not. What else is not? For the torus there is
NO equivalent version of Kuratowski’s characterizati-
on with a finite number of forbidden subdivisions. Any
such characterization must lead to an infinite list.

A weaker concept: Minors.

Graph G is called a minor of graph H is if G can be
obtained from H by a series of edge deletions and
edge contractions. Graph H is also called a G-minor

Example: K5 is a minor of the Petersen graph P , but
P does not contain a K5-subdivision.
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The Graph Minor Theorem

Theorem. (Robertson and Seymour, 1985-2005) In
any infinite list of graphs, some graph is a minor of
another.

Proof: more than 500 pages in 20 papers.

Corollary For any graph property that is closed un-
der taking minors, there exists finitely many minimal
forbidden minors.

Homework. Wagner’s Theorem. Every nonplanar graph
contains either a K5 or K3,3-minor.

For embeddability on the projective plane, it is known
that there are 35 minimal forbidden minors. For em-
beddability on the torus, we don’t know the exact num-
ber of minimal forbidden minors; there are more than
800 known.
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