RECAP - How to find a maximum matching?

First characterize maximum matchings

A maximal matching cannot be enlarged by adding another edge.
A maximum matching of G is one of maximum size.
Example. Maximum \neq Maximal

Let M be a matching. A path that alternates between edges in M and edges not in M is called an M alternating path.
An M-alternating path whose endpoints are unsaturated by M is called an M-augmenting path.

Theorem(Berge, 1957) A matching M is a maximum matching of graph G iff G has no M-augmenting path.

RECAP - Combinatorial approach

Augmenting Path Algorithm

Input graph G on n vertices
Output matching $M \subseteq E(G)$ of maximum size

$M:=\emptyset$

WHILE there exists an M-augmenting path P augment M along P
output M
Problem: How to find an augmenting path fast?
Easier in bipartite graphs:
Naive approach: $O(m n)$
Hopcroft-Karp: $O(m \sqrt{n})$
Tougher for general graphs:
Edmonds' Blossom Algorithm* (1965): $O\left(n^{2} m\right)$
*In his paper "Paths, Trees, and Flowers" Edmonds defined the notion of polynomial time algorithm

History of maximum matching algorithms

Authors	Year	Order of Running Time
Edmonds	1965	$n^{2} m$
Even-Kariv	1975	$\min \left\{\sqrt{n} m \log n, n^{2.5}\right\}$
Micali-Vazirani	1980	$\sqrt{n} m$
Rabin-Vazirani	1989	$n^{\omega+1}$
Mucha-Sankowski	2004	n^{ω}
Harvey	2006	n^{ω}

$\omega:=\inf \{c:$ two $n \times n$ matrices can be multiplied in time $\left.O\left(n^{c}\right)\right\}$
"time" is actually the number of arithmetic operations The determinant, the inverse, or a submatrix of maximum rank of an $n \times n$ matrix can also be found in time $O\left(n^{\omega}\right)$.

Clear: $\omega \geq 2$
Naive algorithm: $\omega \leq 3$

Theorem (Coppersmith-Winograd, 1990) $\omega<2.38$

RECAP - Algebraic approach

First question: Is there a perfect matching in G ?

First let G be bipartite
with parts $U=\left\{u_{1}, \ldots, u_{n}\right\}, W=\left\{w_{1}, \ldots, w_{n}\right\}$.

Let B be the southwest $n \times n$ submatrix of the adjacency matrix of G :

$$
b_{i j}:= \begin{cases}1 & \text { if } u_{i} w_{j} \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

The permanent of B is

$$
\operatorname{per} B:=\sum_{\pi \in S_{n}} b_{1, \pi(1)} b_{2, \pi(2)} \cdots b_{n, \pi(n)}
$$

Claim M has a perfect matching iff $\operatorname{per}(B) \neq 0$

Problem: permanent is hard to compute

Determinant is similar and easy to compute

$$
\operatorname{det} B:=\sum_{\pi \in S_{n}}(-1)^{\operatorname{sgn}(\pi)} b_{1, \pi(1)} b_{2, \pi(2)} \cdots b_{n, \pi(n)}
$$

Problem: $\operatorname{det}(B)$ could be 0 even if $\operatorname{per}(B) \neq 0$.
Solution: Introduce one variable $x_{i j}$ for each edge $u_{i} w_{j} \in G, u_{i} \in U, w_{j} \in W$ and define a matrix A :

$$
a_{i j}:= \begin{cases}x_{i j} & \text { if } u_{i} w_{j} \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

Claim M has a perfect matching iff $\operatorname{det}(A) \not \equiv 0$
Problem: Exponentially many terms.
Solution: Substitution and then determinant calculation takes only $O\left(n^{\omega}\right)$.

How to ensure that "nonzero-ness" is preserved?
Choose a prime $p, 2 n \leq p \leq 4 n$, work over \mathbb{F}_{p}. Substitute randomly (Schwartz-Zippel Lemma)

Claim $\operatorname{det}(A) \not \equiv 0 \Rightarrow \operatorname{Prob}[\operatorname{det}(A) \neq 0]>\frac{1}{2}$

RECAP - Schwartz-Zippel Lemma

Let $q\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be nonzero polynomial of degree $d \geq 0$, and let $S \subseteq \mathbb{F}$ be a finite set. Then the number of n-tuples $\left(r_{1}, \ldots, r_{n}\right) \in S^{n}$ with $q\left(r_{1}, \ldots, r_{n}\right)=0$ is at most $d|S|^{n-1}$. In particular, if $r_{1}, \ldots, r_{n} \in S$ is chosen independently and uniformly at random, then

$$
\operatorname{Pr}\left[q\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

General remark: Correctness proofs proceed in $\mathbb{Z}\left(x_{1}, \ldots, x_{n}\right)$ arithmetic.
Randomization proofs, i.e., that the probability of an incorrect answer is small, depends on selecting a large enough prime p to substitute randomly over \mathbb{F}_{p}. If the algorithm performs t zero-tests of polynomials of degree at most d, then selecting $p \geq 2 t d$ gives that the success probability is at least $\frac{1}{2}$. In the previous perfect matching test algorithm for bipartite graphs there was $t=1$ zero-test of a polynomial of degree n (the determinant).

RECAP - Algebraic approach

Let now $G=(V, E)$ be an arbitrary graph.

Define the Tutte matrix $T(G)=T$ of G

$$
t_{i j}:= \begin{cases}x_{i j} & \text { if } v_{i} v_{j} \in E(G) \text { snd } i<j \\ -x_{i j} & \text { if } v_{i} v_{j} \in E(G) \text { snd } i>j \\ 0 & \text { otherwise }\end{cases}
$$

Theorem (Tutte)

G has a perfect matching iff $\operatorname{det}(T) \not \equiv 0$

Then again: random substitution and evaluation of the determinant gives a randomized algorithm to check whether G has a perfect matching.

How to find a perfect matching?

A first try

Input graph G containing a perfect matching
Output perfect matching $M \subseteq E(G)$
$E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$
$M:=G, i:=0$
WHILE $i<m$ DO $i:=i+1$
IF $\operatorname{det} T\left(M-e_{i}\right) \neq 0$ THEN $M:=M-e_{i}$
output M

Running time: $O\left(m n^{\omega}\right)$

Rabin-Vazirani

Edge $e \in G$ is allowed if it is contained in a perfect matching.

Let $N=T^{-1}$ be the inverse Tutte matrix.

Lemma (Rabin-Vazirani)
Assume that G has a perfect matching.
Then edge $e=i j \in E(G)$ is allowed $\Leftrightarrow N_{i, j} \neq 0$
Proof. $e=i j$ is allowed $\Leftrightarrow G-\{i, j\}$ has a perfect matching $\Leftrightarrow \operatorname{det} T_{\operatorname{del}(\{i, j\},\{i, j\})} \neq 0$ By Fact 1 and Fact 0, we have

$$
\begin{aligned}
\operatorname{det} T_{\operatorname{del}(\{i, j\},\{i, j\})} & = \pm \operatorname{det} T \cdot \operatorname{det} N_{\{i, j\},\{i, j\}} \\
& = \pm \operatorname{det} T \cdot\left(N_{i, j}\right)^{2}
\end{aligned}
$$

Definitions and Facts from Linear Algebra

$n \times n$ matrix $M ; S \subseteq[n]$
submatrix containing rows and colums of $S: M[S]$ i th column (row) denoted by $M_{*, i}\left(M_{i, *}\right)$ when colum set S and row set T is deleted: $M_{\operatorname{del}(S, T)}$
M is non-singular if det $M \neq 0$.
The inverse M^{-1} of M is given by

$$
\left(M^{-1}\right)_{i, j}=(-1)^{i+j} \cdot \frac{\operatorname{det} M_{\operatorname{del}(j, i)}}{\operatorname{det} M} .
$$

M is skew-symmetric if $M=-M^{T}$.

Remark M is skew-symmetric $\Rightarrow M$ is square, all diagonal entries are 0.

Fact $0 . M$ is skew-symmetric, non-singular
$\Rightarrow M^{-1}$ is skew-symmetric

One more fact from Linear Algebra

Let $M=\left(\begin{array}{cc}W & X \\ Y & Z\end{array}\right)$, where Z is square
If M is non-singular, let $M^{-1}=\left(\begin{array}{cc}\hat{W} & \widehat{X} \\ \widehat{Y} & \widehat{Z}\end{array}\right)$
Fact 1. (Jacobi's Determinant Identity)

$$
\operatorname{det} Z= \pm \operatorname{det} M \cdot \operatorname{det} \hat{W} .
$$

Proof of Fact 1.

$$
\left(\begin{array}{cc}
W & X \\
Y & Z
\end{array}\right) \cdot\left(\begin{array}{cc}
\hat{W} & 0 \\
\widehat{Y} & I
\end{array}\right)=\left(\begin{array}{cc}
I & X \\
0 & Z
\end{array}\right)
$$

The Algorithm

Rabin-Vazirani Algorithm

Input graph G containing a perfect matching
Output perfect matching $M \subseteq E(G)$

$$
\begin{aligned}
& H:=G, M:=\emptyset \\
& \text { wHILE }|M|<n / 2 \text { DO } \\
& \quad \text { compute } H^{-1} \\
& \quad \text { find } i j \in E(H) \text { with }\left(H^{-1}\right)_{i, j} \neq 0 \\
& \quad M:=M \cup\{i j\} \\
& H:=H-\{i, j\}
\end{aligned}
$$

output M
Running time: $O\left(n^{\omega+1}\right)$
Question: Do we really have to calculate the inverse always from scratch?

Rank-1 update

$M n \times n$ matrix
$u, v \in \mathbb{F}^{n}$ (column) vectors
$c \in \mathbb{F}$ scalar

Then $\tilde{M}=M+c u v^{T}$ is a rank-1 update of M.
Fact 3. W is non-singular $\Leftrightarrow \hat{Z}$ is nonsingular. Also,

$$
W^{-1}=\widehat{W}-\widehat{X} \hat{Z}^{-1} \widehat{Y}
$$

Proof. First part follows from Fact 1.

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left(W-X Z^{-1} Y\right)^{-1} & 0 \\
Z^{-1} Y\left(W-X Z^{-1} Y\right)^{-1} & I
\end{array}\right) \\
= & \left(\begin{array}{cc}
\widehat{W} & \widehat{X} \\
\widehat{Y} & \hat{Z}
\end{array}\right) \cdot\left(\begin{array}{cc}
I & 0 \\
0 & Z
\end{array}\right) \cdot\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right) \\
= & \left(\begin{array}{cc}
\widehat{W} & \widehat{W} X+\widehat{X} Z \\
\widehat{Y} & \widehat{Y} X+\hat{Z} Z
\end{array}\right)
\end{aligned}
$$

Speed-up via rank-1 updates

Rabin-Vazirani Algorithm with rank 1-updates

(Mucha-Sankowski)
Input graph G containing a perfect matching
Output perfect matching $M \subseteq E(G)$
$M:=\emptyset$
compute $N=T^{-1}$
WHILE $|M|<n / 2$ DO
find $i j \in E(G)$ with $N_{i, j} \neq 0$

$$
\begin{aligned}
& M:=M \cup\{i j\} \\
& N:=N-\frac{1}{N_{i, j}} N_{*, j} N_{i, *}+\frac{1}{N_{i, j}} N_{*, i} N_{j, *}
\end{aligned}
$$

output M

Correctness: After an update of N :

1. in the i the and j th columns all entries are 0 .
2. By Fact $3, N[V \backslash V(M)]$ is the inverse of the Tutte matrix of $G-V(M)$.

Running time: $O\left(n^{3}\right)$

Harvey's divide-and-conquer implementation

FindPerfectMatching(G)
Input graph G containing a perfect matching
Output perfect matching $M \subseteq E(G)$
compute $N=T^{-1}$
output BuildMatching $(V(G), N)$
BuildMatching (S, N, α)
Input subset $S \subseteq V(G)$; integer α;
matrix N with $N[S]$ up-to-date;
Output perfect matching $M \subseteq E(G)$

$$
M:=\emptyset
$$

IF $|S|>2$ THEN
partition $S=S_{1} \cup \cdots \cup S_{\alpha},\left|S_{1}\right|=\cdots=\left|S_{\alpha}\right|$
FOR each $1 \leq a<b \leq \alpha$ DO
BuildMatching $\left(S_{a} \cup S_{b}, N, \alpha\right)$
Update N
ELSE ($|S|=2$)
IF $T_{i, j} \neq 0$ and $N_{i, j} \neq 0$ THEN
$M:=M \cup\{i j\}$
Update N
output M

Correctness and Recursion

\qquad

Correctness: implementation of Rabin-Vazirani; every edge is considered at least once
$h(s)$: running time of BuildMatching for $|S|=s$

Assuming that the "Update" lines can be performed in time $O\left(s^{\omega}\right)$ for a subproblem of size $|S|=s$, we have the recursion

$$
h(s) \leq\binom{\alpha}{2} h\left(\frac{s}{\alpha / 2}\right)+O\left(\binom{\alpha}{2} s^{\omega}\right)
$$

$h(n)=O\left(n^{\omega}\right)$ provided $\log _{\alpha / 2}\binom{\alpha}{2}<\omega$
For $\omega=2.38, \alpha=13$ will do

Efficient updates

A little bit technical...

Idea: At the end of each recursive subproblem do not update the full matrix, only the part belonging to the parent subproblem

It turns out: for a subproblem of size s, this can be done with a constant number of matrix multiplications and inversions of $O(s) \times O(s)$ matrices

Remark: How to generalize all these algorithms finding a perfect matching to find a maximum matching? First, in time $O\left(n^{\omega}\right)$ find a maximum rank submatrix of T. For a skew-symmetric matrix this could be chosen to be a principal submatrix. Then find a perfect matching in the subgraph corresponding to this full rank principal submatrix.

