
Graphs & Algorithms: Advanced
Topics

1

Things

Prerequisite: basic graph theory and graph algorithms.
In particular the material of the course Graphs and Al-
gorithms (Spring 2007)

In graph theoretic notation we mostly follow the book
“Introduction to Graph Theory” by Doug West.

2

Separators — Recap

Let G be a graph. A set S ⊆ V (G) is called an
(f(n), α)-separator if

• |S| ≤ f(|V (G)|) and

• components of G − S are of order ≤ αn.

Theorem Every tree contains a (1, 1
2)-separator, which

can be found in O(n) time.

3

Divide-and-Conquer method

1. Solve the problem on “very-very small” sets with
brute force.

2. Otherwise DIVIDE: Find a “very small” vertex set
C “fast” such that G−C falls into two “small” pie-
ces A and B with no edges in between.

3. CONQUER: Explore all solutions restricted to C

(brute force) and solve the corresponding subpro-
blems on A and B recursively. Put together the
partial solutions.

Here:

“Small” means < βn, where β < 1 is a constant.
“very small” means o(n).
“very-very small” means constant.

Outcome: Algorithm with subexponential running time
2very small

4

Separator for planar graphs

Theorem (Lipton-Tarjan, 1979) G is planar with n ver-
tices. Then G has a (

√
8n, 2

3)-separator, which can
be found in O(n)-time.

Remark The order
√

n is best possible for the order
f(n) of a separator (f(n), α) with constant α < 1.

Remark Sparsity alone is not enough for the existence
of a good separator. Most graphs of linear size would
not allow a good separator with f(n) = o(n)

5

A spanning tree could help

Lemma Let G be planar graph, and let T be a span-
ning tree of G with diameter s.
Then a (s + 1, 2

3)-separator of G can be found in
O(n)-time.

Proof of Theorem using Lemma
WLOG G is connected.

Fix v0 ∈ V (G) arbitrarily.

Define levels: Li := {v ∈ V (G) : dist(v, v0) = i}.

Let l := max{i : Li 6= ∅}.

If 2l + 1 ≤
√

8n, then we are done by Lemma.

Otherwise, let s := d
√

n
2e and

Sj :=
⋃{Li : i ≡ j (mod s)}

Remove Sj0 with |Sj0| ≤ bn
sc ≈

√
2n.

6

Case 1. All components of G−Sj0 are of order ≤ 2
3n.

Be happy, you are done.

Case 2. There is one component K, |K| > 2
3n.

K ⊆
j+s−1

⋃

i=j+1

Li for some j ≡ j0 (mod s).

Then contract Lj into a vertex in G[K ∪ Lj].

The resulting graph H has a spanning tree with dia-
meter 2(s − 1) so by Lemma we have a (2s − 1, 2

3)-
separator SH in H.

Then Sj0 ∪ SH is the appropriate separator of G.

Proof of Lemma

Lemma G is a planar graph, T is a spanning tree of
G with diameter s. Then a (s + 1, 2

3)-separator of G

can be found in O(n)-time.

Proof. WLOG G is a triangulation. (linear time!)

For e ∈ E(G) \ E(T) there is a unique cycle C(e) in
T + e.

nint(C(e)) is the number of vertices in Int(C(e)).

next(C(e)) is the number of vertices in Ext(C(e)).

We are looking for an edge e such that both nint(C(e))

and next(C(e)) are ≤ 2
3n.

7

Proof of Lemma cont’d

Let e = xy ∈ E \ E(T) be arbitrary
Suppose nint(C(e)) > 2

3n.

Find e′ ∈ E \ E(T), s. t.

• next(C(e′)) ≤ 2
3n.

• Int(C(e′)) ⊂ Int(C(e))

Let z ∈ Int(C(e)) be the third vertex in the face F

containing e.

Case 1. zx ∈ E(T).
Choose e′ = zy. (Note that zy /∈ E(T).)

Case 2. zx, zy /∈ E(T).
Choose e′ = zx if nint(C(zx)) ≥ nint(C(zy))

Otherwise choose e′ = zy.

8

The Algorithm

Input: Plane triangulation G, spanning tree T ⊆ G

Output: Edge e ∈ E \E(T); C(e) is a separator with
next(C(e)), nint(C(e)) ≤ 2

3n.

e = xy ∈ E \ E(T) arbitrary, with direction.
Run Clockwise-DFS(y, x, x) to determine nint(C(e))

and nint(C(e)).
IF next(C(e)) > 2

3n THEN

Update y := x, x := y (e changes direction)
IF nint(C(e)) > 2

3n.
WHILE nint(C(e)) > 2

3n DO

z ∈ C(e) ∪ Int(C(e)) such that {z, x, y} is a face.
Alternately run Clockwise-DFS(z, y, x)
and Anticlockwise-DFS(z, x, y).
IF Clockwise-DFS terminates first THEN

nint(C(zx)) ≤ nint(C(zy)); Update e := zy.
ELSE

Update e := zx.
Output e.

9

Algorithm Clockwise-DFS

Clockwise-DFS(z,y,x)
Input: plane triangulation G, spanning tree T ⊆ G,
cyclic lists Lv of the neighbors of v ∈ V in G, those
which are also neighbors in T are marked;
root vertex z, reference vertex y, target vertex x.

u := y, v := z.
WHILE v 6= x DO

u := v,
v := T -neighbor of v coming first after u in Lv

according to the anticlockwise direction.

Remark The tree produced by Clockwise-DFS tends
to “bend” in the clockwise direction.

For Anticlockwise-DFS: Replace “clockwise” with “an-
ticlockwise”.

10

Finding Planar independent sets

MAXIMUM (PLANAR) INDEPENDENT SET PROBLEM

Input: (Planar) graph G

Output: Independent set X ⊆ V with maximum cardi-
nality, that is, |X| = α(G).

Theorem The MAXIMUM PLANAR INDEPENDENT SET pro-
blem is NP-hard.

Theorem The MAXIMUM PLANAR INDEPENDENT SET pro-
blem can be solved in time 2O(

√
n).

Remark We don’t know whether it is possible to solve
the MAXIMUM INDEPENDENT SET problem in time 2o(n).
In fact, we don’t expect that happening.

11

Algorithm PlanarIndSet

Input: Plane graph G

Output: Maximum independent set I

IF |V (G)| ≤ 1 THEN

I := V (G)

ELSE

I := ∅
Find a (

√

8|V (G)|, 2
3)-separator C for G.

Let A ∪ B = V \ C a partition of V such that
|A|, |B| ≤ 2

3n, E(A, B) = ∅.
FOR ALL independent set S ⊆ C DO

IA := PlanarIndSet(G[A \ N(S)])

IB := PlanarIndSet(G[B \ N(S)])

IF |S| + |IA| + |IB| > |I| THEN

I := S ∪ IA ∪ IB

output I

12

