
Dynamic Programming on Trees

Example: Independent Set on T = (V, E)

rooted at r ∈ V .

For v ∈ V let Tv denote the subtree rooted

at v.

Let f+(v) be the size of a maximum inde-

pendent set for Tv that contains v. Similarly,

f−(v) is the size of a maximum independent

set for Tv that does not contain v.

The following algorithm computes a maxi-

mum independent set for T in O(|V |) time.

Traverse T starting from r in post-order. Let

v be the current vertex.

• If v is a leaf, let f+(v) = 1 and f−(v) = 0.

• Else let x1, . . . , xk be the children of v.
Set f+(v) = 1 +

∑k
i=1 f−(xi) and

f−(v) =
∑k

i=1 max{f+(xi), f
−(xi)}.

Return max{f+(r), f−(r)}.



Tree Decompositions

Definition. A tree decomposition for a graph

G = (V, E) is a pair

( {Xi | i ∈ I}, T = (I, F ) )

bags tree

such that

• ⋃

i∈I Xi = V (bags cover vertices);

• for each {u, v} ∈ E there is some i ∈ I s.t.

{u, v} ⊆ Xi (bags cover edges);

• for all v ∈ V the set Iv = {i ∈ I | v ∈ Xi} is

connected in T (tree property).

The width of a tree decomposition is

max
i∈I

|Xi| − 1.

The treewidth of a graph is the minimum

width of a tree decomposition for it.

Example. Trees have treewidth 1.



Basic Observations

Observation. For any graph G = (V, E) a

single bag containing V forms a tree decom-

position of width n − 1.

We are interested in tree decompositions of

small width, which certify that the graph is

in some way “tree-like”.

Denote the treewidth of a graph G by tw(G).

Proposition. tw(H) ≤ tw(G) for any sub-

graph H of a graph G.

Proposition. If a graph G = (V, E) has two

components A and B with A ∪ B = V then

tw(G) = max{tw(A), tw(B)}.



Treewidth of cliques and grids

Lemma. Let ({Xi | i ∈ I}, T = (I, F )) be a

tree decomposition for G = (V, E). For any

clique G[W ], W ⊆ V , there is an i ∈ I such

that W ⊆ Xi.

Proof. Root T arbitrarily. For w ∈ W let rw

denote the bag containing w with minimum

height. Then the bag from {rw |w ∈ W} with

maximum height contains W . �

In particular, the treewidth of Kn is n − 1.

The n × n-grid on {(i, j) |1 ≤ i, j ≤ n} has

treewidth ≤ n: Consider the path on

Xn(i−1)+j = {(i, k) | j ≤ k ≤ n} ∪
{(i + 1, k) |1 ≤ k ≤ j},

1 ≤ i ≤ n − 1, 1 ≤ j ≤ n.



How many vertices are needed in T?

Definition. A tree decomposition ({Xi | i ∈
I}, T = (I, F )) of width k is smooth if

• |Xi| = k + 1 for all i ∈ I;

• |Xi ∩ Xj| = k for all {i, j} ∈ F .

Proposition. For any graph with treewidth

k there exists a smooth tree decomposition

of width k. → Exercise

Lemma. If (X, T = (I, F )) is a smooth tree

decomposition of width k for G = (V, E) then

|I| = |V | − k. → Exercise

In particular, n(T ) ≤ n(G).



Number of edges

Lemma. A graph G = (V, E) of treewidth at

most k has at most k|V | −
(

k+1
2

)

edges.

Proof. Induction on |V |. Base case is |V | =

k+1. Consider a smooth tree decomposition

({Xi | i ∈ I}, T = (I, F )) for G and a leaf i of

T . Then there is a unique vertex v ∈ Xi

that does not belong to any other Xj, j 6=
i. Clearly degG(v) ≤ k. Removing i from T

yields a tree decomposition for G[V \ {v}]. �

Corollary. A graph has treewidth at most

one if and only if it is a forest.



Treewidth and Cuts

Lemma. Let ({Xi | i ∈ I}, T = (I, F )) be

a tree decomposition for a connected graph

G = (V, E) such that Xi * Xj for all i, j ∈ I.

Then

a) Xi ∩ Xj is a cut in G for any {i, j} ∈ F ;

b) Xi is a cut in G for any i ∈ I that is not a

leaf in T .

Remark. It is possible to adapt any tree de-

composition in O(|I|) time to fulfill the non-

containment condition without changing its

width.



Treewidth and Separators

Theorem. From a given tree decomposition

({Xi | i ∈ I}, T = (I, F )) of width k for a graph

G = (V, E) one can find a (k+1, 1
2)-separator

for G in O(|I|) time.

Proof. Root T arbitrarily and define a weight

function w on I by w(i) = |Xi \ Xparent(i)|.
Each v ∈ V is counted exactly once (bags

containing v are connected).

Therefore,
∑

i∈I w(i) = |V |. By the Separator

Theorem for (weighted) trees we obtain a

(1, 1
2)-separator s for T .

Removing Xs disconnects G where

• any v ∈ V \Xs can appear in at most one

subtree (otw, it would also appear in Xs

by connectivity);

• each subtree defines at least one compo-

nent (no edge between subtrees);

• each subtree (and hence component) con-

sists of at most n
2 vertices. �



Dynamic Programming on Graphs of
Treewidth at most k

Given: G = (V, E) and a tree decomposition
({Xi | i ∈ I}, T = (I, F )) of width ≤ k for G.

The algorithm below computes a maximum
independent set for G in O(k24k|V |) time.

Pick an arbitrary root r ∈ I and for i ∈ I let

Vi =
⋃

j∈Ti

Xj

where Ti denotes the subtree rooted at i.

For U ⊆ Xi let fU(i) be the size of a maxi-
mum independent subset of Vi whose inter-
section with Xi is exactly U .

• Traverse T starting from r in post-order.
Let i be the current vertex.

• If i is a leaf, for every U ⊆ Xi let
fU(i) = |U |, if U is independent in G and
fU(i) = −∞, otherwise.

• Else let c1, . . . , c` be the children of i. Set

fU(i) = |U | +
∑̀

j=1

max
{

fW (cj)
∣

∣

∣

W ⊆ Xcj \ U ∧ W ∪ U is independent
}

.



Closure Properties

Proposition. Graphs of treewidth at most k

are closed under taking minors.

Proof. Removal of edges and isolated ver-

tices are trivial. When contracting an edge

{u, v}, replace all occurrences of u in any bag

by v. �

By Robertson-Seymour there is hence a finite

set of forbidden minors. But they are not

known, except for small k.

• k = 0: K2.

• k = 1: K3.

• k = 2: K4.

• k = 3: K5, K2,2,2,

• k = 4: more than 75...



Computing treewidth

Theorem [Arnborg, Corneil, Proskurowski ’87].

Deciding whether the treewidth of a given

graph is at most k is NP-complete.

Theorem [Bodlaender ’96]. For any k ∈ �

there exists a linear time algorithm to test

whether a given graph has treewidth at most

k and—if so—output a corresponding tree

decomposition.

(The runtime is exponential in k3.)

Open. Can the treewidth be computed in

polynomial time for planar graphs?



Not everything is easy for bounded

treewidth...

Theorem [Nishizeki,Vygen,Zhou ’01]. Edge-

disjoint paths is NP-complete for graphs of

treewidth 2.

(But trivial for trees and polynomial for

outerplanar graphs.)

Given a graph G = (V, E) and {si, ti} ∈
(

V
2

)

,

1 ≤ i ≤ k, find k edge disjoint paths Pi such

that Pi connects si and ti.

Theorem [McDiarmid/Reed ’01]. Weighted

coloring is NP-hard for graphs of treewidth

3.

(But trivial for bipartite graphs → trees.)

Given a graph G = (V, E) and w : E → �
, a

weighted k-coloring is a function c : V → [k]

such that |c(u)−c(v)| ≥ w(e) for all {u, v} ∈ E.



Cops and robber

In the omniscient cops and robber game, k

cops each occupy a vertex of a graph in which

a robber moves trying to escape capture. The

robber moves along edges “at infinite speed”,

the cops move by helicopter.

Definition. Given a graph G = (V, E) and

k ∈ �
, a position in the k cops and robber

game on G is a pair (C, r), where C ∈
(

V
k

)

(location of cops) and r is a vertex in some

component of G \ C (location of robber).

In Round 0, the cops choose C0 ∈
(

V
k

)

and

then the robber chooses r0 ∈ V \C0 arbitrarily.

In Round i, i > 0, the cops choose Ci ∈
(

V
k

)

and then the robber chooses a vertex ri ∈
V \ Ci such that there is a path between ri

and ri−1 in G \ (Ci ∩ Ci−1).

The cops win if after some finite number of

rounds the robber has no vertex to choose.



Cops, robber, and treewidth

Theorem [Seymour/Thomas ’93]. If a

graph G has treewidth at most k then k + 1

omniscient cops can catch a robber on G.

Proof. Suppose n(G) > k+1 and let ({Xi | i ∈
I}, T = (I, F )) be a smooth tree decomposi-

tion of width ≤ k for G.

Pick an arbitrary root a ∈ I and for i ∈ I let

Vi =
⋃

j∈Ti

Xj

where Ti denotes the subtree rooted at i.

In the first round choose C0 = Xa.

In Round j, we suppose Cj−1 = Xb for some

b ∈ I and rj−1 ∈ Vb\Xb. Let c be the child of b
for which rj−1 ∈ Vc. Observe that Xb∩Xc is a

k-cut in G. Thus choosing Cj = Xc confines

the robber to Vc \ Xc.

After a finite number of steps the game will

arrive at a leaf ` of T for which V` \ X` = ∅
and the robber has nowhere to go. �

Remark. The converse also holds but the

proof is much more involved.



Cops and robber on the grid

Proposition. On the n × n-grid n − 1 omni-
scient cops cannot catch a robber.

Proof. Whichever positions the n − 1 cops

choose to occupy, there is always at least
one row and at least one column of the grid

without any cop.

We show that the robber can always move
to the intersection of a cop-free row with a

cop-free column.

Initially, this is clear.

Suppose that at some point one or more cops
enter the free row and/or free column where

the robber is located. Then the robber can
move along the previously free row to the to-

be free column and within this column to the
to-be free row. �

Proposition. On the n×n-grid n omniscient

cops cannot catch a robber, for n ≥ 2.
→ Exercise.

Corollary. The n × n-grid has treewidth n.

Corollary. There are planar graphs on n ver-
tices whose treewidth is Ω(

√
n).



Partial k-trees

Definition. A k-tree is a graph formed from

a k-clique by iteratively joining a new vertex

to some k-clique.

In other words, a graph is a k-tree ⇐⇒ there

is an order π = (v1, v2, . . . , vn) of its vertices

such that the neighbors of vi preceding it in

π form a min{i−1, k}-clique, for all 1 ≤ i ≤ n.

Observation.

a) 1-trees are exactly trees.

b) A k-tree on n ≥ k vertices has kn−
(

k+1
2

)

edges.

Definition. A graph is a partial k-tree if it

is a subgraph of a k-tree.



Partial k-trees and treewidth

Theorem. A graph G is partial k-tree ⇐⇒
G has treewidth at most k.

Proof. “⇐”: Let ({Xi | i ∈ I}, T = (I, F )) be

a smooth tree decomposition of width ≤ k

for G. Induction on |I|.

|I| = 1: G is subgraph of Kk+1, a k-tree.

Otherwise, let i ∈ I be a leaf of T . Then

there is a v ∈ Xi that does not occur in any

Xj, j ∈ I \ {i}. Removal of i from I results in

a tree decomposition of width ≤ k for G′ =
(

V \ {v}, E ∪
(

Xi\{v}
2

))

.

By induction G′ is subgraph of some k-tree

H. Add v to H and connect it to the k-

clique Xi\{v}. Clearly G is a subgraph of the

resulting k-tree. �



Partial k-trees and treewidth

Theorem. A graph G is partial k-tree ⇐⇒
G has treewidth at most k.

Proof. “⇒”: Let H be a k-tree containing

G and π = (v1, . . . , vn) a vertex order for H

such that the neighbors of vi preceding it in

π form a min{i−1, k}-clique, for all 1 ≤ i ≤ n.

Build a tree decomposition of width k for

Vi = {v1, . . . , vi} inductively such that for ev-

ery j, 1 ≤ j ≤ i, there is a node that contains

{vj} ∪ Πj, where Πj = Vj ∩ NH(vj).

i ≤ k + 1: A single node for Vi suffices.

Otw, let ` = max{1 ≤ ` < i | v` ∈ Πj}. By

the induction hypothesis there is a tree de-

composition of width k for Vi−1 in which one

node a contains {v`} ∪ Π`.

Create a new node b, make it adjacent to

a only, and set Xb = {vi} ∪ Πi. (Note that

Πi ⊆ {v`} ∪ Π` because Πi is a clique.) �



Grids, minors, and treewidth

Theorem [Alon, Seymour, Thomas ’90].

For any fixed graph H, every graph G that

does not contain H as a minor has treewidth

at most n(H)3/2
√

n(G).

Corollary. A planar graph on n vertices has

treewidth O(
√

n).

Theorem [Robertson, Seymour, Thomas ’94].

Every graph of treewidth larger than 202k5

has a k × k-grid as a minor.

There are graphs of treewidth Ω(k2 log k) that

do not have a k × k-grid as a minor.


