Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institute for Theoretical Computer Science Dr. Tibor Szabó, Dr. Michael Hoffmann 05.12.2007

Graphs & Algorithms II

Exercise Set 11

HS07

URL: http://www.ti.inf.ethz.ch/ew/courses/GA07/

Homework 11

Show that for any $\eta \in (0,1)$ and $k \in \mathbb{N}$ there exist $\gamma = \gamma(\eta,k)$ and $\delta = \delta(\eta,k)$ with the following property.

Consider a graph $H = (\{\nu_1, \dots, \nu_k\}, E)$ and let V_1, \dots, V_k be pairwise disjoint vertex sets of some graph G such that V_i, V_j is γ -regular for any $1 \le i < j \le k$. Moreover, suppose $d(V_i, V_j) \ge \eta$, if $\{\nu_i, \nu_j\} \in E$ and $d(V_i, V_j) \le 1 - \eta$, otherwise. Then at least $\delta \prod_{i=1}^k |V_i|$ tuples from $V_1 \times \dots \times V_k$ span induced copies of H.

Exercise 30

Let G be a tournament on n vertices, given as an $n \times n$ adjacency matrix A. Show that one can find the sink—if it exists—by querying O(n) entries of A only.

Exercise 31

Let \mathbb{F} be a finite field and $k \in \mathbb{N}$. Prove that one can test with $q = O(k + \varepsilon^{-1})$ queries (evaluations) whether a function $f : \mathbb{F} \to \mathbb{F}$ is a polynomial of degree at most k.

Exercise 32

A graph G on n vertices is ε -far from being connected if at least εn edges need to be added to G in order to make it connected.

Let G be a graph, given as an adjacency list for each vertex. Show that one can test using $O(\epsilon^{-3})$ queries whether G is connected.

Homework due: 12.12.2007, 11:00AM.