List Coloring

\(v \in V(G), \ L(v) \) a list of colors

A list coloring is a proper coloring \(f \) of \(G \) such that \(f(v) \in L(v) \) for all \(v \in V(G) \).

\(G \) is \(k \)-choosable or \(k \)-list-colorable if every assignment of \(k \)-element lists permits a proper coloring.

\[\chi_l(G) = \min \{ k : G \text{ is } k \text{-choosable} \} \]

Claim \(\chi_l(G) \geq \chi(G) \)

Claim \(\chi_l(G) \leq \Delta(G) + 1 \)

Example: \(K_n, K_{2,2} \)

Example: \(\chi_l(K_{3,3}) \neq \chi(K_{3,3}) \)

Example: \(\chi_l(G) - \chi(G) \) arbitrary large

Proposition \(K_{m,m} \) is not \(k \)-choosable for \(m = \binom{2k-1}{k} \).
List Coloring Conjecture (1985) $\chi'_l(G) = \chi'(G)$

Theorem (Galvin, 1995) $\chi'_l(B) = \chi'(B)$ for any bi-partite graph B.

Proof for $B = K_{n,n}$ (Dinitz Conjecture, 1979)
Detour: Stable Matchings

Bonnie and Clyde is called an **unstable pair** if

- Bonnie and Clyde are currently not a couple,
- Bonnie prefers Clyde to her current partner, and
- Clyde prefers Bonnie to his current partner.

A perfect matching (of \(n\) woman and \(n\) man) is a **stable matching** if it yields no unstable pair.

Theorem. (Gale-Shapley, 1962) There exists a divorce-free society. More precisely: For any preference rankings of \(n\) man and \(n\) woman there is a stable matching.

Proof. Algorithmic.
The proof of divorce-free society

Proposal Algorithm (Gale-Shapley, 1962)

Input. Preference ranking by each of n man and n woman.

Iteration.
Each man proposes to the woman highest on his list who has not previously rejected him.

IF each woman receives exactly one proposal, THEN stop and report the resulting matching as stable.
ELSE every woman receiving more than one proposal rejects all of them except the one highest on her list.
Every woman receiving at least one proposal says “maybe” to the most attractive proposal she received.

Iterate.

Theorem. The Proposal Algorithm produces a stable matching.
Kernel-perfect digraphs and choosability

A kernel of a digraph D is an independent set $S \subseteq V(D)$, such that for every $v \in V(D) \setminus S$ there is $w \in S$, such that \vec{vw}.

A digraph is kernel-perfect if every induced subdigraph has a kernel.

Let $f : V(G) \to N$ be a function. A graph G is called f-choosable if a proper coloring can be chosen from any family of lists $\{L(v)\}_{v \in V(G)}$ provided $|L(v)| \geq f(v)$ for every $v \in V(G)$.

Lemma (Bondy-Boppana-Siegel) Let D be a kernel-perfect orientation of G. Then G is f-choosable with $f(v) = 1 + d_D^+(v)$.

Theorem (Galvin, 1995) $\chi_l'(K_{n,n}) = \chi'(K_{n,n})$.

Proof. Give a kernel-perfect orientation to $L(K_{n,n})$ with $\Delta^+ = n - 1$.
Kernel-perfect orientation of $L(K_{n,n})$

$M = W = \{0, 1, 2, \ldots, n - 1\}$

$E(K_{n,n}) = V(L(K_{n,n})) = \{ij : i \in M, j \in W\}$

$ij \rightarrow i'j$ iff $i + j > i' + j \pmod{n}$

$ij \rightarrow ij'$ iff $i + j < i + j' \pmod{n}$

$d^+(ij) = n - 1$ for every $ij \in V(L(K_{n,n}))$

Why do we have a kernel for every $S \subseteq V$?

Define an appropriate preference list based on S, such that for any stable matching K, $K \cap S$ is a kernel.

Man i prefers woman j to woman j' iff

$ij \in S, ij' \in S$ and $ij \leftarrow ij'$ or

$ij \in S, ij' \notin S$ or

$ij \notin S, ij' \notin S$ and $ij \leftarrow ij'$
Woman j prefers man i to man i' iff

$ij \in S, i'j \in S$ and $ij \leftarrow i'j$ or

$ij \in S, i'j \notin S$ or

$ij \notin S, i'j \notin S$ and $ij \leftarrow i'j$

Claim. $K \cap S$ is a kernel for $L(K_{n,n})[S]$

Proof. K is a matching $\Rightarrow K \cap S$ is independent

Suppose there is $ij \in S \setminus K$ which has no outneighbor in $K \cap S$. Let $i'j, i'j \in K$.

Then either $i'j \notin S$, or $i'j \in S$ and $ij \leftarrow i'j$. In any case i prefers j to j'.

Similarly either $i'j \notin S$ or $i'j \in S$ and $ij \leftarrow i'j$. In any case j prefers i to i'.

Hence ij is an unstable pair, a contradiction.