FTll \begin{tabular}{l}
Eidgonössische \\
Technische Hochschule

Ecole polytechnique fédérale de Zurich \\
Zürich
\end{tabular}

Institute of Theoretical Computer Science
Lecturer: Prof. Jack Snoeyink
Assisfant: Yves Brise
March 21, 2007

Geometric Computations in Molecular Biology SSO7

Backbone hydrogen bonding patterns determine a protein's helices and sheets:
Of course, computers can't visualize proteins the same way we can, but must perform more laborious coordinate comparisons to determine structure. Most of these are surprisingly geometric - e.g. here is a list of all pairs of backbone N and O atoms with distances in ($2.8 \AA, 3.15 \AA$) for one of the proteins from the matching game.
Determine the helix and sheet structure of this protein.
Then see if you can determine its PDB id.

N	6	$\rightarrow 0$	3	dist	3.05	N	80	-> 0	- 78	dist	3.08
N	8	$\rightarrow 0$	32	dist	2.89	N	81	-> 0	- 78	dist	3.05
N	9	$->0$	53	dist	2.89	N	84	$\rightarrow 0$	- 54	dist	2.87
N	10	$\rightarrow 0$	34	dist	2.89	N	85	-> 0	- 105	dist	2.94
N	11	$\rightarrow 0$	55	dist	2.81	N	86	$\rightarrow 0$	- 56	dist	2.84
N	12	$\rightarrow 0$	36	dist	3.13	N	87	$\rightarrow 0$	- 107	dist	2.97
N	18	$\rightarrow 0$	14	dist	3.09	N	93	$\rightarrow 0$	$\bigcirc 91$	dist	3.15
N	19	$\rightarrow 0$	15	dist	2.99	N	94	$\rightarrow 0$	- 91	dist	2.97
N	20	$\rightarrow 0$	16	dist	2.92	N	95	-> 0	- 91	dist	2.94
N	21	$\rightarrow 0$	17	dist	2.93	N	96	$\rightarrow 0$	- 92	dist	3.01
N	22	$\rightarrow 0$	18	dist	2.89	N	97	-> 0	- 93	dist	2.96
N	23	$\rightarrow 0$	19	dist	2.89	N	98	-> 0	- 94	dist	2.89
N	24	$\rightarrow 0$	20	dist	2.88	N	99	$\rightarrow 0$	- 95	dist	2.90
N	25	$\rightarrow 0$	21	dist	2.90	N	100	-> 0	- 96	dist	2.85
N	26	$\rightarrow 0$	22	dist	2.96	N	101	$\rightarrow 0$	- 97	dist	3.01
N	27	$\rightarrow 0$	23	dist	2.99	N	102	$\rightarrow 0$	- 98	dist	3.13
N	27	$\rightarrow 0$	24	dist	3.12	N	102	$\rightarrow 0$	- 99	dist	2.94
N	28	$\rightarrow 0$	25	dist	3.00	N	103	$\rightarrow 0$	- 98	dist	2.87
N	29	$\rightarrow 0$	25	dist	3.14	N	109	$\rightarrow 0$	- 87	dist	2.94
N	29	$\rightarrow 0$	26	dist	2.94	N	116	-> 0	- 112	dist	2.96
N	30	$\rightarrow 0$	25	dist	2.91	N	117	$\rightarrow 0$	- 113	dist	2.82
N	33	$\rightarrow 0$	31	dist	3.14	N	118	-> 0	- 114	dist	2.99
N	34	$\rightarrow 0$	8	dist	2.88	N	119	$\rightarrow 0$	- 115	dist	2.98
N	36	$\rightarrow 0$	10	dist	2.93	N	119	$\rightarrow 0$	- 116	dist	3.13
N	39	$\rightarrow 0$	63	dist	3.02	N	120	$\rightarrow 0$	- 116	dist	2.83
N	42	$\rightarrow 0$	38	dist	2.96	N	121	$\rightarrow 0$	- 117	dist	2.85
N	43	$\rightarrow 0$	39	dist	3.02	N	122	$\rightarrow 0$	- 118	dist	2.89
N	43	$\rightarrow 0$	40	dist	3.15	N	123	$\rightarrow 0$	- 119	dist	3.00
N	44	$\rightarrow 0$	40	dist	2.96	N	125	$\rightarrow 0$	- 121	dist	2.87
N	45	$\rightarrow 0$	41	dist	3.06	N	126	$\rightarrow 0$	- 122	dist	2.97
N	45	$\rightarrow 0$	42	dist	3.11	N	127	-> 0	- 123	dist	2.88
N	46	$\rightarrow 0$	42	dist	2.84	N	128	$\rightarrow 0$	- 124	dist	2.92
N	47	$\rightarrow 0$	43	dist	3.05	N	129	-> 0	- 124	dist	2.86
N	48	$\rightarrow 0$	45	dist	2.96						
N	49	$\rightarrow 0$	46	dist	3.06						
N	54	$\rightarrow 0$	82	dist	2.90						
N	55	$\rightarrow 0$	9	dist	2.90						
N	56	$\rightarrow 0$	84	dist	2.93						
N	57	$\rightarrow 0$	11	dist	2.98						
N	65	$\rightarrow 0$	58	dist	3.03						
N	68	$\rightarrow 0$	64	dist	2.94						
N	69	$\rightarrow 0$	65	dist	2.93						
N	70	$\rightarrow 0$	66	dist	2.88						
N	71	$\rightarrow 0$	67	dist	3.00						
N	72	$\rightarrow 0$	68	dist	2.95						
N	73	$\rightarrow 0$	69	dist	2.97						
N	74	$\rightarrow 0$	70	dist	2.99						

