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Central issues concerning protein structure prediction have
been highlighted by the recently published summary of the
fourth community-wide protein structure prediction experiment
(CASP4). Although sequence/structure alignment remains 
the bottleneck in comparative modeling, there has been
substantial progress in fully automated remote homolog
detection and in de novo structure prediction. Significant
further progress will probably require improvements in
high-resolution modeling. 
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Abbreviations
CASP Critical Assessment of Protein Structure Prediction
HMM hidden Markov model
MD molecular dynamics
PDB Protein Data Bank
rmsd root mean square deviation

Introduction
Progress in protein structure prediction is assessed by
the community-wide experiment Critical Assessment
of Protein Structure Prediction (CASP) [1]. In CASP,
sequences of proteins whose experimental structures are
soon to be released are made public; computational
research groups are then invited to predict those 
structures from the target sequence and any other publicly
available information. Typically, the groups are given a
few months to make their predictions using the
method(s) of their choice. These methods range from
fully automated servers to methods that require significant
human intervention.

The results of the fourth protein structure prediction
experiment, CASP4, as well as those of several parallel
assessments of automated prediction methods (CAFASP
[2•], LiveBench [3] and EVA [4]), have been published
recently in a supplementary issue of Proteins: Structure,
Function and Genetics [5]. We focus this review on the results
presented in that issue, as they provide an impartial view
of progress in the field. By contrast, the performance of
current methods is often difficult to assess from traditional
research papers, as knowledge of the native structure can
influence the prediction in ways not intended by the
investigator and negative results are rarely published.
The unbiased evaluation of protein structure prediction
methods by the CASP experiments organized by John Moult
and colleagues has made a very important contribution to
the progress of such methods in recent years.

Traditionally, protein structure prediction is divided into
three areas, depending on the similarity of the target to
proteins of known structure. First, in comparative modeling,
one or more template proteins of known structure with
high sequence homology to the target sequence are
identified. The target and template sequences are aligned,
and a three-dimensional structure of the target protein is
generated from the coordinates of the aligned residues of
the template protein, combined with models for loop
regions and other unaligned segments. Ideally, this three-
dimensional model would then be refined to bring it closer
to the true structure of the target protein. A key outstanding
question is whether such refinement actually improves the
predicted structure, that is, whether the refined structure
is closer to the native structure than the unrefined template
structure. Second, if no reliable template protein can be
identified from sequence homology alone, the prediction
problem is denoted as a fold recognition problem. Here,
the primary goal is to identify one or more template protein
structures that are consistent with the target sequence,
that is, template folds that the target sequence might
plausibly adopt. The subsequent protocol is similar to
that of comparative modeling: align the sequences and
compose a three-dimensional model from the alignment.
An outstanding question in fold recognition is whether
structural information can improve upon sequence-based
methods, that is, whether it enables the identification of
remote homologs not detectable by sequence-based
methods. Third, if no template structure can be identified
with confidence, the target sequence may be modeled
using de novo (or new fold) prediction methods. An out-
standing question in de novo prediction is whether such
methods can predict structures to a resolution useful for
biochemical applications.

Other questions are common to all three areas of protein
structure prediction. First, how do the predictions made
by fully automated methods compare to the predictions
curated by human experts? This question is obviously
relevant to genome-scale structure/function predictions,
which require high-throughput methods. Second, have
protein structure prediction methods improved over the
years during which the CASP experiments have been
carried out? Third, and most difficult, can we predict the
future trajectory of the field, that is, guess the rate of
improvement of prediction methods? In this review, we
also try to identify the obstacles that are hindering progress
at present.

Comparative modeling
The performance of the top eight comparative modeling
groups at CASP4 was roughly similar [6•,7]. Obtaining
good alignments appears to be the key element of success;
loop modeling and further refinement are futile without a

Protein structure prediction in 2002
Jack Schonbrun, William J Wedemeyer and David Baker*

sb120317.qxd  24/05/02  16:00  Page 348



Protein structure prediction Schonbrun, Wedemeyer and Baker    349

reasonably accurate initial alignment. However, there is a
limit to the alignment accuracy that can be achieved for
distantly related proteins because the residual sequence
similarity that guides the alignment becomes weaker with
greater evolutionary distance. Furthermore, because of
deletions and insertions, there is not necessarily a strict
one-to-one correspondence between sequence positions in
the two structures; in fact, different structure/structure
comparison methods frequently produce quite different
structure-based alignments. 

Most alignment methods are based on similarity between
the sequences of the target and the template proteins.
Alignment accuracy is often improved by using sequence
profiles constructed from multiple sequence alignments
for the target, the template or both. Sternberg and
co-workers [8] generated sequence profiles from structural
alignments of remote homologs using the 3D-PSSM
program and then compared the target sequence to these
profiles. Our group used a new alignment method that
rewards matches of the query sequence to residues in the
template that are almost always present in the structures of
homologs and penalizes insertions or deletions in regions
that are consistently ungapped in homologs. In some cases,
using multiple proteins as templates for different portions
of the sequence yielded improved structures. For example,
Venclovas [9] used multiple parent structures obtained by
an iterative PSI-BLAST procedure, in which sequences
found in a search based on the target sequence were used
to initiate new searches to extend the range of matches.
Because different segments of a target sequence may align
better to different parents, it can be helpful to combine
these parents into an overall template; how best to
recombine the parents is an open problem.

The results of the top eight groups confirmed that (when
there is significant sequence similarity between the target
and template sequences) reasonable comparative models
can be built consistently. However, as in previous CASP
experiments, the assessors found that almost every 
predicted structure submitted for comparative modeling
targets had a higher rmsd to the true native structure than
that given by a structural alignment to the best available
template [6•]. This highlights the importance and the 
difficulty of the alignment problem, as well as of refining
initial template structures to become closer to the true
native structure.

After building a three-dimensional model from an alignment,
full-atom refinement methods should (in principle) be able
to correct for some alignment errors and to guide models
closer to the true native structure. For example, molecular
dynamics (MD) protocols that simulate proteins with
molecular mechanics potential functions would seem to be
well suited to this task [10]. However, none of the top
comparative modeling groups used these methods, probably
because previous experience indicated that such methods
generally make the predicted structures worse rather than

better. The refinement of comparative models would seem
to provide an excellent test of the application of such
simulation methods, because the initial models are generally
quite close to the true structure and, hence, sampling is not
as difficult as in, for example, de novo structure prediction.
A systematic comparison of experimental structures with
models refined using current MD/molecular mechanics
methods should be encouraged, as this would probably
identify the reasons why such protocols perform poorly at
present and how they should be improved. Better refinement
methods would, in turn, lead to better alignments, as they
might identify (and possibly correct) alignment errors.

Table 1

Current snapshot of the ranking of prediction servers
conducted by LiveBench.

Sensitivity Specificity
Added
value

Server Type Easy Hard All Hard Easy Hard

Pcons2 Consensus 6 4 2 2 3 3
ShotGun on 5 Consensus 1 2 4 4 7 5
ShotGun on 3 Consensus 2 1 1 1 2 2
Shotgun-INBGU Threading 3 3 3 3 4 1
INBGU Threading 7 5 6 9 5 6
Fugue3 Threading 14 8 9 8 15 9
Fugue2 Threading 12 7 8 7 10 8
Fugue1 Threading 17 14 14 11 16 15
mGenTHREADER Threading 8 11 16 13 6 11
GenTHREADER Threading 13 12 17 15 8 13
3D-PSSM Threading 5 10 12 12 12 10
ORFeus Sequence 4 6 7 6 1 4
FFAS Sequence 9 9 5 5 9 7
Sam-T99 Sequence 10 15 13 16 11 16
Superfamily Sequence 15 13 11 10 17 12
ORF-BLAST BLAST 11 16 10 14 14 14
PDB-BLAST BLAST 16 17 15 17 13 17
BLAST BLAST 18 18 18 18 18 18
The LiveBench program conducts an automated weekly evaluation
of protein structure prediction servers. There are a large number of
possibilities for ranking the servers and this table presents a
compilation of just a few of them. The results change every week
after new proteins are added to the pool of targets. The table
shows the results for eighteen servers grouped by type. The top
three servers are consensus servers, which create only jury
predictions based on the results obtained by other prediction
servers. The next group of eight servers (actually various versions of
servers developed by four research groups) represents more
traditional ‘threading’ approaches, which utilize the structure of the
template protein in their scoring function. The next group of four
servers utilizes only sequence information on the template protein
(and its derivatives) and could thus also be used to find homologs
of a query protein with unknown structure (they can be used not
only for structure prediction). The last group of three represents
simple servers, which utilize exclusively the components of the
BLAST family of tools. The presented ranking is divided into three
main categories: sensitivity of the server, specificity of the server
(reliability of the reported score) and added value (reflects the value
of a server when compared to the rest). The ranking is also divided
into hard and easy (found by PDB-BLAST with significant score)
targets (or all in case of specificity). The details of the evaluation
methods are described in the LiveBench paper [3] and on the
LiveBench home page. The main results from the latest round are
that the consensus methods are very valuable in judging the quality
of the results produced by the community of prediction methods
and the confirmation of the competitiveness of sequence-only
methods with threading methods.

sb120317.qxd  24/05/02  16:00  Page 349



350 Sequences and topology

Despite the limitations of current methods, comparative
modeling can still be very useful to biologists. The best
predicted regions are often biologically important [8],
because these are the most structurally conserved by
evolution. Thus, comparative modeling often predicts
accurately ‘the parts that matter’.

Fold recognition
Fold recognition has been transformed by the advent of
powerful sequence-based methods (such as PSI-BLAST [11]
and hidden Markov model [HMM]-based methods [12])
that exploit evolutionary information to match sequences
to known structures. In particular, PSI-BLAST is probably
the most widely used tool for remote homolog detection
in molecular biology today and often identifies matches
missed by earlier sequence-based methods, such as
BLAST. Interestingly, the CAFASP and LiveBench tests
(Table 1) show that PSI-BLAST alone performs worse at
fold recognition than several other sequence-based and
sequence-and-structure-based methods. Nevertheless,
PSI-BLAST (or a closely related method) forms the core of
many of the most successful methods. For example,
Koretke et al. [13] extended the range of PSI-BLAST,
using iterative searches to expand the number of hits and
then PSI-BLAST searches back to the query sequence to
‘back-validate’ hits with low significance. 

Methods that used structural information generally did
so by reducing the structure to a one-dimensional string
of properties, such as secondary structure or solvent acces-
sibility. Karplus et al. [12] improved the performance of
their HMM-based sequence comparison method by
adding a track to compare predicted and known secondary
structures. One of the most successful automated servers,
3D-PSSM, evaluates the match of the query sequence to
both the sequence of the template and the solvent
accessibility pattern of the template structure [8]. By
contrast, GenThreader evaluates alignments found
through PSI-BLAST using the residue contacts in the
three-dimensional structure [14]. 3D-PSSM goes beyond
sequence and structural information by comparing key
words in the annotations of the proteins and assigning a
high score to matches with significant key word similarity.

The question of whether structural information helps
significantly is still unresolved — two very successful
servers, ORFeus (http://grdb.bioinfo.pl) and FFAS [15],
use only sequence information (see Table 1). Although it
may seem counterintuitive that structural information does
not necessarily provide significant improvement, it must
be kept in mind that current sequence-based methods
use evolutionary information from both the target and
template sequences, which helps to bridge the evolutionary
distance between the two sequences. Sequence information
would be expected to be insufficient to match sequences
to structures of evolutionarily unrelated homologs, but
even methods that utilize structural information are rarely
successful in such cases [13,16•].

As in comparative modeling, the best groups achieved a
similar level of performance, despite considerable differ-
ences between the methods. This is probably because
they all detect distant sequence similarities at some level,
augmented, to differing extents, by structural and functional
similarity. There is clearly a fundamental limitation to
methods that rely on conservation of structural properties
across large evolutionary distances; structural changes
(e.g. sidechain packing, sheet twist and helix orientations)
can invalidate the implicit assumption that the target
sequence has a low energy when threaded on to the
template structure.

Humans versus automated servers
The performance of fully automated servers on CASP4
targets was assessed in the CAFASP2 experiment. An
important conclusion from comparing the CASP/CAFASP
results was that fully automated methods are approaching
the accuracy of human-curated predictions. Many top
fold recognition groups in CASP4 were also represented
by servers and the performance of the fully automated
methods was only slightly inferior to that of their human-
curated counterparts. Indeed, the CAFASP authors noted
that the fully automated servers outperformed ~70% of the
human participants [2•], although, to be fair, many
groups may have been more interested in testing the
basic concepts underlying their methods than achieving
optimal performance.

There is still a gap between fully automated servers and
the best performing groups, even in fold recognition. The
most spectacular illustration of how a human expert can
outperform automated servers was the prediction of target
104 (hypothetical protein HI0065 from Haemophilus
influenzae) by Murzin and Bateman [17], who were able
not only to find a homolog but also to deduce that several
secondary structure elements needed to be added/deleted
to agree with the target sequence. Their remarkable model
possessed a novel topology and a rmsd from the native
structure of only 2.15 Å (Figure 1).

Humans have an advantage over fully automated servers in
that they can integrate a wide variety of information about
the target. This integration can be mimicked, to some extent,
computationally by taking a consensus of the predictions
of different automated servers. Such a consensus has been
implemented in the Pcons2 server [18]. A key result of the
CAFASP/LiveBench experiments is that such consensus
servers outperform all individual automated servers
(Table 1). In particular, consensus servers provide more
accurate measures of prediction confidence, which are vital
if predicted structures are to be used extensively by the
biological community.

The LiveBench assessment experiment, organized by
Rychlewski and co-workers (http://bioinfo.pl/LiveBench/),
is an innovative automated ranking of automated fold
recognition servers. As new structures are entered into the
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PDB, their sequences are submitted to over a dozen
participating servers. The resulting predictions are then
compared to the native structure and the results tabulated
on the web site. This continuous, large-scale evaluation
of automated servers provides a statistically significant
comparison of different methods (Table 1). (As an aside,
LiveBench, despite its unquestioned importance for the
field of protein structure prediction, is currently threatened
by the uncertainties of science funding in Poland.
Hopefully, alternative sources of funding can be identified,
should the worst be realized.)

‘De novo’/new fold methods
Despite sporadic reports of solutions to the de novo protein
folding problem, the CASP2 assessor concluded that there
had not been significant progress towards a solution and
held out little hope for the future [19]. It was noted that
large-scale structural genomics initiatives seemed likely to
solve high-resolution structures for representatives of most
families of naturally occurring proteins before useful
models could be generated by computational methods.

Nevertheless, the CASP experiments have clearly
documented significant improvements in de novo folding
from CASP2 to CASP3, and from CASP3 to CASP4 [20•].
The Rosetta method developed in our group made par-
ticularly good de novo predictions in CASP4 [21•,22], as
illustrated in Figure 2. The overall topology of large
segments of domains or (in some cases) entire domains was
predicted consistently and accurately. In some cases, the
models are of sufficient quality to provide clues about
protein function, which has motivated large-scale modeling
of protein families using Rosetta.

We believe this improved performance stems from both
the model of folding that underlies Rosetta and the way in
which this model is implemented. A key element is the
separation of local and nonlocal interactions. Rosetta is
based on a picture of protein folding in which short
segments of the chain independently sample distinct
distributions of local conformations, biased by their local
sequences. Folding to the native state occurs when these
segments have relative orientations and conformations that
allow low free energy nonlocal interactions to form
throughout the protein. To implement this picture of
folding as a computational algorithm, we approximate the
distribution of local structures sampled by a given segment
during folding by the distribution of local structures
adopted by such segments in known protein structures.
Thus, during a Rosetta folding simulation, each nine- and
three-residue segment of the protein chain flickers
between the different local structures that are consistent
with its local sequence, while the nonlocal interactions are
slowly optimized using a Monte Carlo search procedure. A
low-resolution model of the nonlocal interactions dominated
by hydrophobic burial and strand pairing is used until near
the end of the simulation, when a rotamer-based explicit
sidechain model with Lennard–Jones interactions is 
introduced. The entire procedure resembles a jigsaw
puzzle in which each piece can have several alternative
shapes. An advantage of Rosetta’s fragment approach over
traditional molecular mechanics approaches is that current
potential functions are probably not accurate enough to
capture all the physical interactions that determine the
local conformational preferences, for example, specific
sidechain–mainchain hydrogen bonds. In contrast to other
prediction protocols that fix the local structure before
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Figure 1

(a) (b) (c)

Current Opinion in Structural Biology

The conversion from template to prediction for target 104 (hypothetical
protein HI0065 of H. influenzae) by Murzin and Bateman [17]. (a) The
template (PDB code 1NSF) from which modeling began. Because of
incompatibilities in the secondary structure predicted for target 104
and the template, several significant changes were made to the
topology of the submitted model, shown in (b). A helix and strand
(shown at the bottom of the figure in green) were replaced by a loop

and strand going in the opposite direction. At the C terminus of the
protein (shown at the top of the figure in red), an extra strand was
added to the central sheet and a helix was added to the end of 
the chain. All of these changes are seen in the native structure (c). 
The coordinates of (b,c) were taken from the CASP web site
(http://predictioncenter.llnl.gov/casp4); figures prepared with
MOLSCRIPT [26].
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Figure 2
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predicting the long-range structure, large changes in local
structure can occur even quite late in the simulation in
response to changes in the nonlocal interactions.

Although Rosetta consistently finds structures with topologies
close to the native for many proteins, there is much room
for improvement. It is still difficult to discern the native
structure from other ‘protein-like’ decoys. The models in
Figure 2 represent the best of the five structures submitted
for CASP4; some of the other four models were often quite
different from the native structure. The probability of
Rosetta making a good prediction correlates with the average
sequence separation between residues close in space in the
native protein — the contact order (see Figure 2). High
contact order proteins fold much more slowly than low
contact order proteins (because there is a large loss in chain
entropy before the formation of substantial numbers of
attractive native interactions); by analogy, computational
folding to the native structure may likewise take much
more time. Furthermore, even when they are topologically
correct, the structures generated by Rosetta are relatively
low in resolution and are clearly not suitable for applications
that require high-resolution detail, such as drug design and
understanding enzyme action. The refinement of models
using full-atom representations of the chain is an important
area of current work and progress here will be necessary for
both improving the accuracy of the models and increasing
their reliability.

Most of the other methods deemed successful for new fold
targets also built up structures from fragments of other
structures in the PDB. Jones’ FRAGFOLD [23] algorithm
selected fragments from a library of supersecondary structure
elements using a threading potential. One difference
between FRAGFOLD and Rosetta is that the former does
not directly utilize sequence information when picking
fragments and thus may be somewhat less sensitive to
turn motifs and so on. Skolnick et al. [24] used a threading
technique to predict possible long-range contacts, which
were used to guide a subsequent Monte Carlo search on a
regular lattice. Contact predictions were also made by
Fariselli et al. [25], who used a neural network applied to
correlated mutation information.

Coalescence of structure prediction problems
The traditional division of structure prediction categories
has broken down to some extent over the past several
years. The division between fold recognition and com-
parative modeling has become blurred as comparative
modeling methods use more and more sensitive methods

to identify templates, and fold recognition techniques
have improved alignments by incorporating detailed
sequence information. Ultimately, it will probably be
useful to build models of all plausible matches of amino
acid sequences to structural templates for evaluation. With
the improvement in performance of de novo structure
prediction, predictions for proteins only very distantly
related to proteins of known structure can, in some cases,
be comparable to those produced by fold recognition
methods [21•]. Finally, long loop modeling in comparative
modeling is essentially a small de novo prediction problem.
Over the next few years, we should see combined methods
that use methodologies developed in all three areas to
model all portions of a protein sequence at the highest
resolution possible given the available information.

Conclusions
In closing, we return to the questions posed at the begin-
ning of this review. Can existing refinement methods bring
comparative models closer to the true structure? The
answer appears to be ‘no’; comparative modeling is still
limited by the accuracy of the target/template alignments.
Present refinement methods do not overcome misalign-
ments, implying that progress will come through either
the surveying of many possible alignments or better
refinement methods. Does structural information help in
identifying remote homologs for fold recognition? The
answer appears to be a qualified ‘yes’, although the
improvement is relatively minor for automated methods.
Some sequence-based methods perform almost as well as
methods that utilize structural information and detailed
properties of the three-dimensional structure (beyond
secondary structure and solvent accessibility) do not seem
to contribute significantly. Furthermore, essentially all of
the best methods rely primarily on sequence information;
structural information is used to refine, not supplant,
sequence-based methods. Lastly, de novo structure pre-
diction methods have progressed to the point at which
models with correct overall topology can be obtained a
reasonable fraction of the time.

Regarding the relative performance of automated servers
versus human experts, the CASP4/CAFASP2 experiments
demonstrated clearly that fully automated fold recognition
methods can produce results that are nearly as good as
those produced by almost all human/expert methods. This
bodes well for high-throughput genome analysis.

Finally, what of the future trajectory of structure prediction
methods? Although several particular challenges remain,
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Figure 2 legend

Comparison of the best Rosetta prediction with the native structure 
for selected CASP4 targets. The native structure is on the left and the
predicted model structure is on the right (except where they are
superimposed); the chain is colored to guide visualization from blue

(N terminus) to red (C terminus). The number in a box next to each
protein is the native contact order. For the two structures with contact
orders over 20 (shown in the box), Rosetta failed to generate any
structures with the correct topology.
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all three categories of structure prediction seem to be
blocked by a common obstacle, that of high-resolution
modeling. The models often have the correct overall
topology, but are incorrect in higher resolution details, for
example, the loops in comparative models and recognized
folds, and the packing and other details of de novo pre-
dictions. These details are clearly essential to determining
the native fold of a protein and its biochemical interpretation.
In order for predictions to approach the reliability of
experimentally determined structures, it will be necessary
to model the interactions contributing to protein stability
more accurately (particularly the close complementarity of
sidechain packing) and to develop improved sampling
methods that can find such well-packed conformations.
The ability to consistently model these higher resolution
features of protein structure would contribute to all areas
of protein structure prediction. Being so close to the
problem ourselves, it is difficult to estimate the rate of
progress, but we permit ourselves the guardedly optimistic
prediction that significant progress towards high-resolution
predictions of protein structures will occur within the next
several years — by CASP6 in 2004, if not CASP5.
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