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ABSTRACT Techniques from graph theory are
applied to analyze the bond networks in proteins
and identify the flexible and rigid regions. The bond
network consists of distance constraints defined by
the covalent and hydrogen bonds and salt bridges in
the protein, identified by geometric and energetic
criteria. We use an algorithm that counts the de-
grees of freedom within this constraint network and
that identifies all the rigid and flexible substruc-
tures in the protein, including overconstrained re-
gions (with more crosslinking bonds than are needed
to rigidify the region) and underconstrained or
flexible regions, in which dihedral bond rotations
can occur. The number of extra constraints or re-
maining degrees of bond-rotational freedom within
a substructure quantifies its relative rigidity/flexibil-
ity and provides a flexibility index for each bond in
the structure. This novel computational procedure,
first used in the analysis of glassy materials, is
approximately a million times faster than molecular
dynamics simulations and captures the essential
conformational flexibility of the protein main and
side-chains from analysis of a single, static three-
dimensional structure. This approach is demon-
strated by comparison with experimental measures
of flexibility for three proteins in which hinge and
loop motion are essential for biological function:
HIV protease, adenylate kinase, and dihydrofolate
reductase. Proteins 2001;44:150–165.
© 2001 Wiley-Liss, Inc.
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INTRODUCTION

More than 15,000 protein structures have been deter-
mined to date, using X-ray crystallography and nuclear
magnetic resonance (NMR) spectroscopy.1 Such structures
are deduced from sophisticated refinement procedures in
conjunction with stereochemical modeling.2 Proteins can
be described as a collection of stable fragments,3 ranging
in size from a small number of residues to an entire
domain. Different packings of the protein molecules in
alternative crystal forms can trap the protein in different
conformational states, providing snapshots of some of the
conformations accessible to the protein.3 NMR spectros-

copy can also indicate dynamic regions of proteins by
showing that several conformations are consistent with
the experimental constraints, typically inter-proton dis-
tances.4

Other computational procedures have been devel-
oped5–10 to characterize the intrinsic flexibility and rigid-
ity within a protein. These procedures fall within three
classes. One approach compares different conformational
states, e.g., from different crystallographic or NMR confor-
mations observed for the protein, to deduce which regions
in the protein are flexible or rigid.5–7 A second approach
focuses on simulating a protein’s motion, by means of molecu-
lar dynamics calculations, using a forcefield describing inter-
atomic potentials.11–14 The third class focuses on identifying
rigid protein domains or flexible hinge joints8–10,15,16 based
on a single conformation. Each method has its limitations.
In the first class, the methods are limited by the diversity
of the conformational states that are available from experi-
ment for comparison, whereas the second class is limited
by the computational time involved, meaning that large
motions of the protein are usually not sampled. The third
class, to which our approach belongs, defines the rigid and
flexible regions in the protein from a single conformation
and can be used as the starting point to sample a range of
motions. These methods are generally computationally
fast and can provide a starting point for more efficient
molecular dynamics or Monte Carlo sampling of protein
conformations, as the number of degrees of freedom in the
protein is reduced significantly by defining which regions
are rigid. A significant question is, as always: to what
extent do such methods for defining rigid/flexible regions
correlate with what is observed experimentally?

The bonds within a protein can be represented as a
network in which the covalent forces and strong hydrogen
bonds are modeled as distance constraints between atoms.
The mechanical stability of the corresponding bond net-
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work of a protein can then be analyzed using new graph
theoretical techniques that were originally developed for
analyzing the rigidity of substructures within covalent
network glasses.17–19 The computer implementation20 of
this procedure is referred to as Floppy Inclusion and Rigid
Substructure Topography (FIRST), which provides a real-
time tool for evaluating the intrinsic flexibility within a
protein. FIRST gives the precise mechanical properties of
a protein structure under a given set of constraints. This
approach defines not only the rigid regions in a protein,
but also those regions that move collectively (whose mo-
tions are coupled), as well as those that move indepen-
dently of other regions in the structure. Furthermore, the
relative flexibility or rigidity of each region is quantified,
based on the density of bonds remaining rotatable in each
flexible region. This article applies this approach to defin-
ing the flexible regions and their relationship to ligand
binding in three diverse proteins.

METHODS

Both bonding and nonbonding forces play an important
role in determining the structure of a protein and the
dynamics about the native fold. The nonbonding forces are
both short- and long-range. Although both hydrophobic
interactions and van der Waals forces, as well as long-
range electrostatic forces, play an important role in stabi-
lizing a protein structure in the native state,21 these forces
are generally weak between pairs of atoms and not highly
directional, and thus are not represented as interatomic
distance constraints. Strong bonding forces, such as cova-
lent and hydrogen bonds, tend to be directional and are
modeled in the present study as distance and angle
constraints.

Constraints

The covalent bonding within the protein resulting from
bond-stretching (central), bond-bending, and torsional
forces defines a natural set of interactions that can be
modeled as distance constraints. It is common practice to
represent the degrees of freedom accessible to a protein by
fixing the covalent bond lengths and associated bond
angles, while allowing the dihedral angles to rotate. The
torsional forces associated with peptide bonds and the
other partial-double and double bonds in proteins effec-
tively prevent dihedral rotation about the bond and are
also represented as constraints. Using the rotatable dihe-
dral angles as a set of internal coordinates, the number of
degrees of freedom to describe the flexibility of a protein is
typically reduced by a factor of about 7 relative to a
Cartesian representation.22

In addition to covalent bonding forces, hydrogen bonds
(Fig. 1) have high directional dependence and act over
short distances, in contrast to the hydrophobic forces,
which are less specific and may be regarded as slippery. By
this, we mean that the energy associated with the hydro-
phobic forces does not change significantly for gentle
conformational shifts away from the native state. It is
reasonable to expect that the buried hydrogen bonds will
be substantially maintained as the protein undergoes

conformational changes near its native structure. Recent
results by Lu and Schulten23 suggest that the breaking of
a hydrogen bond occurs as a well-defined event, involving
going over an energy barrier, as opposed to a continuous
stretching until a feeble final breaking occurs. These
investigators suggest that hydrogen bonds typically break
one by one as the protein unfolds, while in some cases a
consortium of hydrogen bonds break simultaneously, giv-
ing a much higher effective barrier.

Rigidity in Networks

Our graph-theory algorithm20,24 for analyzing proteins
is a three-dimensional (3-D) extension and implementa-
tion of results in mathematical rigidity theory that have
developed over the past few years. The roots of this work go
back to Lagrange’s25 introduction of constraints on the
motion of mechanical systems during the late eighteenth
century, which Maxwell26 used during the late nineteenth
century to determine whether structures were stable or
deformable. The applications of this type of work have
traditionally been to solve problems in engineering, such
as the structural stability of different truss configurations
in bridges. A very significant advance occurred with La-
man’s theorem27 in 1970, which precisely determines the
degrees of freedom within two-dimensional (2-D) net-
works, and allows the rigid regions and flexible joints
between them to be found. The most general type of 3-D
network for which results can be calculated are the
so-called bond-bending networks (or, equivalently, molecu-
lar frameworks), in which vertices are connected by edges
and in which every angle between edges is defined. A
broader class of networks is the bar-joint framework, in
which the angles are not specified; analyzing flexibility
and rigidity for this case remains a significant unsolved
problem in mathematics. For 3-D bond-bending networks,
the flexibility in the system derives from dihedral or
torsional rotations of the bonds that are not locked in by
the network, and this kind of framework is used to
represent the constraints within a protein.

First, we present a general algorithm using brute-force
matrix diagonalization to identify all the rigid clusters in a

Fig. 1. Model of a hydrogen bond, involving donor and acceptor
atoms, shown as nitrogen and oxygen, respectively. Covalent bonds are
shown as thin black lines. The hydrogen bond is modeled as three
distance constraints, consisting of a nearest-neighbor central-force con-
straint shown as a thick solid line (top center), and two next-nearest-
neighbor bond-bending force constraints (constraining the donor–
hydrogen–acceptor angle), shown as dashed lines. Each hydrogen bond
is also associated with three a priori rotatable dihedral angles, indicated
by the arrows.
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framework consisting of a network of atoms with intercon-
necting bonds. The fundamental step on which all such
calculations are based is the ability to test whether a
constraint (bond between atoms) is redundant or indepen-
dent. A constraint is considered redundant if breaking it
has no effect on the flexibility of the network, and indepen-
dent if its breakage does affect the flexibility. This can be
determined using the following procedure:

1. Define a network of atoms and distance constraints
between them.

2. Replace each distance constraint by a spring. All spring
constants are set to unity in arbitrary units, and the
natural length of each spring is set equal to the distance
between the associated pair of atoms.

3. Construct a dynamical matrix28 for the spring network,
and calculate all the normal mode frequencies (eigenval-
ues) of this network. The eigenvalues indicate whether
the mode of vibration has a finite or zero frequency.

4. Count the number of zero eigenvalues, corresponding to
zero-frequency vibrational modes, or floppy modes, of
the system.

5. Add to the system the distance constraint being tested
for redundancy or independence, and repeat the above
steps.

6. If the number of zero eigenvalues remains the same, the
added constraint is redundant; otherwise, it is indepen-
dent.

This procedure is repeated, using steps 5 and 6 above,
for each constraint in the network that is to be tested for
redundancy or independence. Afterwards, in order to
identify all the rigid clusters of atoms within the network,
called a rigid cluster decomposition, a test constraint is
placed between each pair of atoms. Only test constraints
found to be redundant are added to the network. Once all
pairs of atoms have been tested and all redundant con-
straints added, the rigid clusters are identified by selecting
all atoms that are connected by a contiguous path of
face-sharing tetrahedrons, which form a rigid pathway.
Tetrahedra are the 3-D generalization of triangles, where
a pathway of edge-sharing triangles forms a rigid path in
two dimensions.

The implementation described above can be used on any
type of 3-D framework, but the resulting computational
performance scales as O(N2 3 N3), where N is the number
of vertices (atoms) in the framework, rendering it useless
for application to protein structures with thousands of
atoms. Also of interest are the regions that have more
distance constraints than are required for rigidity, that is,
that have redundant constraints within the rigid clusters.
When redundant constraints are present, this creates
regions of internal strain. In order to measure the strain,
an additional separate numerical algorithm must be used
to relax the network and calculate the stress in the
springs. These methods, such as conjugate gradient, typi-
cally scale as O(N2).

Clearly, the distance constraint approach will only be
useful in as much as the calculation for identifying rigid

clusters and flexible regions is fast and scales linearly or
nearly linearly with system size. The two main contribu-
tions of the present article are to show how to use concepts
from graph rigidity29 to make this type of calculation
feasible and then to present applications of this approach
to three diverse proteins, showing that their predicted
conformational flexibility correlates well with known, bio-
logically relevant flexible regions in these proteins.

Generic Rigidity

A generic structure is one that has no special symme-
tries, such as parallel bonds or bond angles of 180°, that
could create geometric singularities.30 Under these condi-
tions, the study of rigidity becomes much easier because
the properties of network rigidity depend only on the
connectivity as determined by an underlying graph. La-
man’s theorem27 states how generic rigidity within any
2-D generic framework can be characterized completely by
applying constraint counting to all the subgraphs within
the framework. Applying Laman’s theorem directly leads
to a combinatorial calculation that scales exponentially in
the number of atoms within the framework. However, by
applying Laman’s theorem recursively, a very fast and
efficient integer algorithm (the so-called “pebble game”)
has been constructed17,31,32 for identifying rigid clusters
and stressed regions. The computational complexity of the
pebble game scales in the worst case as O(N2) for pathologi-
cal networks, where N is the number of vertices or atoms
in the network, and scales linearly in practice. The algo-
rithm also scales linearly with N in computer memory.

Unfortunately, it has been a longstanding problem that
in 3-D generic bar-joint frameworks, constraint counting
over the subgraphs is known to fail in general; that is,
Laman’s theorem does not simply generalize to 3-D bar-
joint frameworks. However, for the special class of truss
frameworks, in which the bars and joints have extent and
the bars are subject to bond-bending angle constraints,
Laman’s theorem can be generalized18,24 to three dimen-
sions. In addition, the molecular framework conjecture
proposed by Tay and Whiteley33,34 indicates that Laman
constraint counting extends to nongeneric molecular mod-
els in which all bonds (hinges) of an atom pass through a
single central point of the atom. Although the molecular
framework conjecture requires a rigorous proof, there are
no known exceptions after years of exact testing. Thus, we
model the microstructure of a protein using distance
constraints that define a bond-bending network and apply
the 3-D pebble game to determine precisely the rigid
clusters, stressed regions, and internal degrees of freedom
in terms of dihedral angles.

Pebble Game

At the heart of the FIRST computer program designed to
analyze protein structures is the 3-D pebble game algo-
rithm, constructed in a very similar way to its 2-D counter-
part.17,18,31,32 The pebble game is an implementation of
the counting implicit in Laman’s theorem in two dimen-
sions, as well as its 3-D generalization. Here, three pebbles
are assigned to each vertex or atom, representing the 3
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degrees of freedom of the atom. Each bond is represented
by a distance constraint, or edge. For each independent
edge between two vertices, a pebble from one of the two
vertices must be used to cover the edge. Pebbles that
remain associated with vertices are called free pebbles,
and they represent the independent degrees of freedom
remaining to this vertex within the framework. Each
independent edge thus uses up one independent degree of
freedom from a vertex. Then the following covering rule is
applied: once an edge is covered by a pebble (forming an
independent constraint), it must always remain covered by
one of the pebbles associated with its incident vertices.
Rearrangement of pebbles throughout the graph is pos-
sible, provided that this covering rule is maintained and
that three pebbles remain associated with each vertex, as
free pebbles or as pebbles associated with edges coming
from the vertex. Figure 2 shows a pebble covering for a
network. The pebble covering is a convenient way to
indicate the degrees of freedom accessible to atoms, and to
mark which constraints are independent and which are
redundant in the bond network. Essentially the redistribu-
tion of pebbles from vertices to bonds, by a series of
stepwise pebble exchanges, is an intuitive way of represent-
ing a dynamically changing directed graph.24,31

The 3-D pebble game is a recursive algorithm. The
framework is built up by adding one distance constraint at
a time, until the final framework is complete. To maintain
a bond-bending network, each bond-stretching distance
constraint having incident vertices v1 and v2 has associ-
ated with it angular (i.e., second-nearest-neighbor) con-
straints about both vertices. In the case of proteins, these
angular constraints correspond to the angles of bond
coordination about an atom, defined by its chemistry. For
each new independent distance constraint introduced,
pebbles are rearranged to test whether the new constraint
is independent; this is indicated by whether a pebble can

be moved to that constraint from one of its vertices. If the
new distance constraint is independent, it is then covered
by a pebble; otherwise, it is not covered. This process
continues until all distance constraints within the network
have been placed and tested for independence. The algo-
rithm can be sketched as follows:

1. Begin with a set of unconstrained vertices, each with
three pebbles, representing the three degrees of free-
dom for each vertex in 3-D space.

2. Place a central-force distance constraint between verti-
ces v1 and v2, thereby building the framework up one
distance constraint at a time.

3. Rearrange the pebble covering, if necessary, to collect
three pebbles on vertex v1.

4. Rearrange the pebble covering to collect as many pebbles
as possible (where three is the maximum) on vertex v2,
while holding the three pebbles at vertex v1.

5. If the number of pebbles on vertex v2 is two, the edge is
redundant. Otherwise, three pebbles reside at vertices
(v1 and v2) and both remain independently mobile.
Continue to rearrange the pebble coverings:
a. Hold the three pebbles on vertex v1 and the three

pebbles on vertex v2.
b. For each neighbor of vertex v2, attempt to collect a

pebble from a neighboring bond, restoring a pebble
to that bond from its other vertex.

c. If for any neighbor of vertex v2 a pebble cannot be
obtained, the edge joining the two vertices is redun-
dant.

d. If the edge is not redundant, cover it with a pebble
from vertex v2.

Unlike the 2-D pebble game, the distance constraints
cannot be placed in random order. The first distance
constraint that is introduced must correspond to a central-
force constraint.

After each central-force distance constraint is placed, all
its associated angular or bond-bending constraints (next-
nearest-neighbor distance constraints) must be placed
before another central-force constraint can be introduced.
Within this restriction, the order of placing either central
force or the associated bond-bending constraints is com-
pletely arbitrary, and the resulting decomposition of the
network into rigid clusters is unique. This restriction on
recursively placing constraints is sufficient18,24 for con-
straint counting to remain valid in characterizing the
rigidity of 3-D bond-bending networks within proteins or
other structures. Finally, torsional constraints for the
peptide and resonant bonds are fixed by third-nearest-
neighbor distance constraints (e.g., fixing the distance
between the amide H and carbonyl O in peptide bonds).
These are most conveniently placed after the central and
bond-bending distance constraints.

After all distance constraints have been placed, the
number of free pebbles remaining on the vertices gives the
total number of degrees of freedom required to describe the
motion of the framework. This includes the six trivial rigid
body translational and rotational degrees of freedom of the

Fig. 2. Diagrammatic representation of the final pebble covering of a
simple network. Free pebbles are placed directly on vertices and denote
degrees of freedom (E). Pebbles covering a bond are placed directly on
the edges of the graph and represent distance constraints (F). The pebble
covering is not unique, because pebbles can be rearranged according to a
few simple rules as explained in the text. An example is shown of how an
elementary pebble exchange works (two arrows). A free pebble can be
moved onto a covered edge (adjacent to a vertex), provided that a
corresponding pebble, presently covering the edge and associated with
the neighboring vertex, is moved off.
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whole network. The free pebbles can be rearranged but are
restricted to certain regions because of the pebble-covering
rule. For example, no more than six free pebbles can be
found within a rigid cluster. Based on the location and
number of free pebbles throughout the framework, one can
identify overconstrained regions, rigid clusters, and under-
constrained regions, as described below.

Strained Regions

A redundant constraint is identified when a failed
pebble search occurs. A failed pebble search consists of a
set of vertices that have no extra free pebbles to give up.
This physically corresponds to placing an additional dis-
tance constraint between a pair of atoms that have a
predefined fixed distance. Placing a distance constraint
between this pair of atoms generally causes a length
mismatch and leads this region to become internally
strained. Thus, a failed pebble search identifies overcon-
strained regions. Overconstrained regions always consist
of closed loops. Because distance constraints are added to
the framework, more overconstrained regions will be found,
and generally these regions will overlap. Overlapping,
overconstrained regions merge together into a single over-
constrained region. As these frameworks are generic,
stress will propagate and redistribute throughout the
merged overconstrained regions. Redundant bonds reside
within overconstrained regions. Therefore, the more redun-
dant bonds that are present within a given rigid region,
the more stable that region will be against removal of
constraints, e.g., crosslinking salt bridges or hydrogen
bonds.

Rigid Cluster Decomposition

The method used to identify the rigid clusters, including
overconstrained regions, is very simple once all edges in
the graph are in place and the pebble game is finished. All
rigid clusters can at most have six free pebbles distributed
over the vertices within the cluster. Therefore, to identify
these clusters, select a vertex and two of its bonded
nearest-neighbor vertices. Collect three pebbles on the
selected vertex and two pebbles and one pebble, respec-
tively, on its two neighboring vertices. Because we are
considering bond-bending networks, it is always possible
to collect these six pebbles, and never any more. Mark
these three vertices. Then, iteratively in a breadth-first
search, check all bonded, unmarked nearest neighbors to
the current set of marked vertices, to see whether a free
pebble can be obtained. If a free pebble cannot be obtained,
mark the new vertex, and note that it is part of the same
rigid cluster. This method works because all rigid clusters
in bond-bending networks are contiguous through bonded
nearest neighbors17,20; this point is essential and implicit
in the generalization of Laman’s theorem to 3-D bond-
bending networks.

The rigid cluster decomposition using the 3-D pebble
game has been compared with the numerical brute force
method described earlier. For a variety of generic bond-
bending networks containing as many as 450 atoms, exact
agreement has always been found.35 It is worth mention-

ing that in contrast to the numerical method, the 3-D
pebble game can be used on networks with more than 10
million atoms with the security of knowing the results are
exact, because the pebble game is an integer counting
algorithm, eliminating the possibility of any numerical
round-off errors. Therefore, even the largest proteins and
protein complexes can be analyzed both precisely and
rapidly.

Underconstrained Regions

Locating rotatable bond dihedral angles in the protein,
which correspond to hinge joints in the network, is an easy
task after the rigid cluster decomposition is made. Note
that a hinge joint can never occur about a next-nearest-
neighbor distance constraint, which corresponds to a bond-
bending angle.17 If the two incident vertices of a bond-
stretching constraint belong to different rigid clusters, a
dihedral angle rotation is possible, and the bond is re-
corded as a hinge joint; otherwise, the dihedral angle
motion is locked, as it is part of a rigid cluster. The number
of rotable dihedral angles will generally be considerably
more than the number of residual internal degrees of
freedom in the network. Not all the rotatable dihedral
angles associated with hinge joints are independent, as
they are part of a ring of bonds (e.g., within loops formed by
crosslinking hydrogen bonds).

Collective motions consist of coupled dihedral angles
within the protein and take place in underconstrained
regions. Distinct underconstrained regions are partitioned
such that collective motions can occur within one undercon-
strained region without directly affecting internal coordi-
nates within all the other underconstrained regions. The
underconstrained regions are identified by attempting to
specify a value for each dihedral angle and determining
whether it can be satisfied. Specifying a dihedral angle is
equivalent to placing an external torsional constraint to
lock in this choice of angle. Independent, externally im-
posed torsional constraints represent independent degrees
of freedom available to the system, while redundant,
externally imposed constraints indicate the angle is prede-
termined as part of a collective motion. Therefore, the
algorithm for finding these distinct underconstrained re-
gions is the same as that for finding the overconstrained
regions, except that now the only constraints placed in the
network are the external torsional constraints.

Proteins as Bond-Bending Networks

The connectivity of a bond-bending network is com-
pletely defined by the nearest-neighbor bond-stretching
(central-force) constraints. Next-nearest-neighbor dis-
tance constraints represent the angular bond-bending
constraints due to the atom’s chemistry. Dihedral rotation
about the central-force bonds is the elementary flexible
element in this type of network. Rotation through a
dihedral angle is possible a priori but may be locked
because of crosslinking bonds in the network. Further-
more, dihedral angles associated with double or partial-
double bonds are represented as fixed by using a third-
nearest-neighbor distance constraint. For instance, to lock
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the peptide bonds within a protein structure, the distance
between the carbonyl oxygen and amide hydrogen is fixed.
Therefore, along the backbone of a protein the F, C
dihedral angles are a priori allowed to rotate, but the
peptide bonds and other double-bonded groups are kept
planar in this way.

As shown in Figure 1, the hydrogen bond is modeled
similarly to a covalent bond, in which the donor, hydrogen,
and acceptor atoms are typically generic and hence nonco-
linear. Each hydrogen bond will introduce three distance
constraints, corresponding to one central force between
the hydrogen and acceptor atoms and two bond-bending
forces associated with the hydrogen and acceptor atoms.
This model for a hydrogen bond allows the protein struc-
ture to be described as a bond-bending network and is
physically reasonable because hydrogen bonds are almost
never precisely linear; the three dihedral angle degrees of
freedom associated with this representation of the hydro-
gen bond also allow it to have some flexibility. Modeling
the hydrogen bond to be more or less constrained than this
has been tested, and the model in Figure 1 provides a good
balance between neither over- nor underrepresenting the
flexibility of a hydrogen bond. This model results in ideal
rigid a-helices, and b-sheets ranging from rigid to some-
what flexible, depending on size and the regularity of their
hydrogen-bonding patterns. Moreover, protein structures
typically show a substantial proportion of rigid regions,
while having regions that remain flexible. Determination
of constrained and rotatable dihedrals, as implemented in
the FIRST software’s implementation of the pebble game,
has been tested against exact counting and shown to agree
for all the elementary structures: a-helices, parallel and
antiparallel b-sheets, and reverse turns.

APPLICATION TO PROTEINS

Detailed information about the mechanical stability of a
protein under a fixed set of distance constraints is provided
by FIRST analysis. All overconstrained regions, rigid
clusters, and underconstrained regions are determined
and can be colored and viewed using standard molecular
rendering packages, including Rasmol and InsightII. To
analyze a protein, it must first be decided which hydrogen
bonds to include and model as distance constraints.

Hydrogen Bonding

Beyond covalent bonds, salt bridges and then hydrogen
bonds form the next strongest interactions within proteins
(Fig. 3). Hydrogen bonds vary in strength from nearly as
strong as the covalent bonds to as weak as the van der
Waals interactions.36,37 Hydrogen bonds form directional
crosslinks in the bond-bending network that lead to large-
scale rigid regions. In proteins, the regular hydrogen-
bonding patterns between main-chain amide and carbonyl
groups form the regular secondary structures: a-helices,
b-sheets, and reverse turns. Hydrogen bonds also stabilize
the tertiary structure of proteins through side-chain inter-
actions that interlock parts of the protein chain distant in
sequence.

For protein structures in which the hydrogen atom
positions are not experimentally defined (the case for most

crystallographic structures determined by X-ray rather
than neutron diffraction), the WhatIf software package is
used to assign polar hydrogen atoms positioned such that
their hydrogen-bonding opportunities are optimized.38 Be-
cause FIRST results will depend on the accuracy of
placement of polar hydrogen atoms (because of their
influence on hydrogen bonds being assigned, or not), we
have tested how well WhatIf-defined hydrogen positions
compare with the experimentally determined positions in
five neutron diffraction structures from the Protein Data
Bank (PDB; www.rcsb.org/pdb).1 Five neutron structures
available in the PDB are lysozyme (PDB entry 1lzn),
trypsin (1ntp), insulin (3ins), myoglobin (2mb5), and ribo-
nuclease A (5rsa). For each structure, we processed the file
through FIRST using two different hydrogen-bond energy
threshold or cutoff values, as discussed below. We then
created a modified version of the neutron structure by
stripping the hydrogen atoms from it and adding new
hydrogens with WhatIf. This new structure was then
processed through FIRST for comparison with the results
obtained using neutron diffraction-defined hydrogen atom
positions.

Table I contains results for these five neutron structures
at two different energy cutoff values: 20.1 kcal/mol and
20.6 kcal/mol (the latter corresponding to thermal fluctua-
tion at room temperature). The comparative results show
only slight differences due to a few hydrogens placed
differently in the two structures. The percentages shown
are calculated by dividing twice the number of hydrogen
bonds in common by the total number of hydrogen bonds
for both versions of the protein structure. While the energy
threshold of 20.6 kcal/mol is more restrictive and includes

Fig. 3. Schematic representation of the ordering of microscopic
forces, from strongest to weakest. Distance constraints are used in FIRST
to model strong bonding forces to the left of a sliding pointer. This
approach defines a network of covalent and hydrogen bonds and salt
bridges in the protein.
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only the strongest hydrogen bonds, there was slightly less
overall agreement (94%) in the hydrogen bonds at this
energy threshold in the WhatIf and neutron versions of the
structure than was found at the chosen threshold of 20.1
kcal/mol (96%). Thus, on average, only 4% of the hydrogen
bonds were assigned differently in the two types of struc-
tures. Not surprisingly, many of the hydrogen-bond differ-
ences resulted from different placement of hydrogens on
histidine residues. Histidine has two side-chain nitrogen
atoms that can bond to 0, 1, or 2 hydrogens, depending on
the local environment. Overall, we conclude that the
WhatIf software package positions hydrogen atoms suffi-
ciently accurately to permit analysis of the resulting
hydrogen-bond network.

To define the hydrogen bonds and salt bridges for
inclusion in the analysis of rigid and flexible regions, the
geometry and energy of these interactions is assessed. A
superset of possible hydrogen bonds is assigned based on
meeting the following geometric39,40 criteria: the donor–
acceptor distance, d # 3.6 Å, the hydrogen-acceptor dis-
tance, r # 2.6 Å, and the donor–hydrogen-acceptor angle,
u, falls between 90° and 180° (Fig. 4). Salt-bridge (ion-pair)
interactions are considered as a special case of hydrogen

bonds. Salt bridges are similar to hydrogen bonds, with a
more significant ionic or Coulombic component, which is
less geometrically sensitive. Our identification of such salt
bridges follows previous studies41–43 by extending the
maximum distance between donor and acceptor to 4.6 Å
and softening the angular dependence such that u falls
between 80° and 180°.

Because the strength of hydrogen bonds and salt bridges
depends on the chemistry of the particular donor and
acceptor atoms as well as their orientation, an energy
function44 is then used to rank hydrogen bonds:

EHB 5 V0H5Sd0

d D
12

2 6Sd0

d D
10J F~u, f, w! (1)

where

sp3 donor–sp3 acceptor
sp3 donor–sp2 acceptor
sp2 donor–sp3 acceptor
sp2 donor–sp2 acceptor
V0 5 8kcal/mol and d0 5 2.8 Å

F 5 cos2ucos2(f2109.5)
F 5 cos2ucos2f
F 5 cos4u
F 5 cos2ucos2(max[f,w])

The hydrogen bond energy (EHB) is a function of the
equilibrium hydrogen bond distance, d0, and well depth,
V0. The donor to acceptor distance is d. The angular
dependence of the function, F, is dependent on the hybrid-
ization of the donor and acceptor atoms. The four possible
cases shown rely on the angular terms u, f, and w. Angle u
defines the donor atom–hydrogen–acceptor atom angle,
and f is the angle between the hydrogen atom, the
acceptor, and the base atom bonded to the acceptor. The w
angle is between the normals of the two planes defined by
the sp2 centers. If f is less than 90°, the supplement of the
angle is used. Figure 4 illustrates how these parameters
are defined.

Salt bridges can be viewed as strong hydrogen bonds36

with average energies of 26 (64) kcal/mol.45 Salt bridges
have broader distance and angular distributions than are

TABLE I. Effect of Hydrogen Atom Placement on the Number of Hydrogen Bonds Identified*

H-Bond Energy

PDB Code

1lzn 1ntp 2mb5 3ins 5rsa Total

No. of residues 129 223 153 102 124 —
No. of protein atoms 1762 1790 1836 1305 1556 —
Resolution (Å) 1.70 1.80 1.80 1.50 2.00 —

No. of H-bonds with E # 2 0.1 kcal/mol No. common to both 184 216 249 108 140 897
No. unique to neutrona 3 9 13 3 4 76No. unique to modifiedb 11 17 6 6 4
% in common 96.3 94.3 96.3 96.0 97.2 95.9

No. of H-bonds with E # 2 0.6 kcal/mol Common to both 130 168 182 80 116 676
Unique to neutrona 7 16 22 3 3 84Unique to modifiedb 6 9 8 6 4
% in common 95.2 93.1 92.4 94.7 97.1 94.2

*Experimentally defined hydrogen positions and resulting hydrogen bonds of five neutron structures are compared with the hydrogen bonds
resulting from assignment of hydrogen positions by WhatIf in the same five structures.
aRows labeled unique to neutron include the number of hydrogen bonds from experimentally determined hydrogen atom positions.
bRows labeled unique to modified include the number of hydrogen bonds from WhatIf calculated hydrogen atom positions in neutron diffraction
structures from which the experimentally determined hydrogen atom positions had been removed.

Fig. 4. Geometry used in the hydrogen bond energy potential. u is the
donor–hydrogen–acceptor angle; f is the hydrogen–acceptor–base
angle, where base is the atom (C, in this case) covalently bonded to the
acceptor; d is the donor–acceptor distance; r is the hydrogen–acceptor
distance; and w (not shown) is the angle between the normals of the
planes defined by the covalent bonds of the donor and base atoms (e.g.,
the planes defined by the two sp2 centers, N and C, in this case).
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found for nonionic hydrogen bonds, and these observed
distributions are not well reflected by the hydrogen-bond
energy functions we have tested. Salt bridges within the
above specified geometric ranges generally have stronger
interactions than those exhibited by hydrogen bonds.
Therefore, salt bridges meeting the above geometric crite-
ria are always included in the bond network analyzed for
flexibility.

For hydrogen bonds, we can tune the energy threshold
(the sliding pointer in Fig. 3) used to define which hydro-
gen bonds are included in the network. Setting the thresh-
old at less negative (less favorable) energy values includes
weaker hydrogen bonds, which tend to be common in
proteins and have a significant influence on structural
stabilization. The ability to select hydrogen bonds based on
strength allows investigation of how the stability in each
region of the protein varies as the hydrogen-bond network
is strengthened or weakened. By changing the criteria for
modeling a hydrogen bond as a constraint, a protein can be
substructured from containing a few, large rigid clusters
down to being completely floppy, with many small rigid
clusters involving single atoms with their covalent bonds
acting as rotatable dihedral angle hinges. Individual hydro-
gen bonds or small sets of hydrogen bonds that form
critical crosslinks can therefore be identified by shifting
the energy threshold and observing which hydrogen bonds,
when included or omitted, have a large effect on the
rigidity of the network.

Ideally, we would like to be able to set this energy cutoff
value, perform a single FIRST analysis, and know that the
output describes the physically relevant flexibility of a
protein. One way of setting the energy threshold objec-
tively is to choose it such that maximum agreement in the
hydrogen-bond network is obtained for pairs of indepen-
dently determined structures for a protein (e.g., by differ-
ent researchers or in different crystallographic packings)
in which the main-chain conformations are the same. This
ensures that the results of FIRST analysis are not sensi-
tive to the sorts of fluctuations known to occur within
protein structures. Since the energy cutoff is the tunable
parameter in using FIRST, we tested which setting gave
the most similar results between pairs of such structures.
Such a cutoff value should naturally be below when all
hydrogen bonds are present (Ecut # 0.0 kcal/mol) and
above when the protein substructures into many tiny rigid
clusters (Esplinter). A very natural place to look at the
behavior of these proteins is near room temperature which
corresponds to Ert 5 20.6 kcal/mol. However, because the
energy function is approximate (does not take into account
the effect of more distant neighboring atoms on hydrogen-
bond strength), it is important not to take these energies
too literally, and to consider them as relative rather than
absolute.

To determine a reasonable default energy threshold for
hydrogen bonds, we evaluated which threshold best con-
serves the hydrogen bonds within a family of protein
structures. Multiple structures within four different pro-
tein families were studied to find such a threshold. The
PDB codes used for each family are as follows: trypsin

(1tpo, 2ptn, 3ptn), trypsin inhibitor (4pti, 5pti, 6pti, 9pti),
adenylate kinase (1zin, 1zio, 1zip), and human immunode-
ficiency virus protease (HIVP) (1dif, 1hhp, 1htg). Figure 5
shows the hydrogen-bond energy distribution for one of
these families, namely the three HIVP structures. A large
spike in the distribution of possible bonds located between
20.1 kcal/mol and 0.0 kcal/mol for the number of hydrogen
bonds in the three structures appears in Figure 5. This
spike is largely due to the fact that quite generous
definitions of hydrogen bonds are allowed initially (donor–
hydrogen–acceptor angle, u $ 90° and donor–acceptor
distance, d # 3.6 Å, as shown in Fig. 4). The inset in
Figure 5 expands the region near 0.0 kcal/mol, demonstrat-
ing how a large number of very weak hydrogen bonds,
often with u angles near 90°, can be removed by setting
Ecut # 20.1 kcal/mol. Thus, the generous hydrogen bond
distance and angle screening criteria can be effectively
filtered by setting Ecut. When these geometric criteria and
an energy threshold of 20.1 kcal/mol are applied to
analyze the hydrogen bonds and salt bridges in five
neutron diffraction structures, a Gaussian distribution is
observed for the number of hydrogen bonds as a function of
donor–acceptor distance, with virtually all hydrogen bonds
and salt bridges having distances between 2.6 and 3.6 Å.
The distribution in donor–hydrogen–acceptor angles is
bimodal, with a strong, Gaussian peak between 130° and
180° and a weaker peak between 90° and 130°.

In the choice of protein structures to analyze, the
stereochemical quality of the structure can have a signifi-
cant influence on the definition of its network of hydrogen
bonds, due to their angular dependence. The result is that
FIRST analysis on a structure with poor stereochemistry
is likely to indicate the protein as being more flexible than
it actually is, due to missing hydrogen bonds. It is advis-
able to assess the main-chain stereochemistry through a

Fig. 5. Histogram of energies for hydrogen bonds. Distribution of
hydrogen bond energy for three structures of human immunodeficiency
virus protease (HIVP) (PDB codes 1dif, 1hhp, 1htg). Hydrogen positions
were established by WhatIf. The inset expands the low-energy (weak
hydrogen bond) region between 20.2 and 0 kcal/mol. An energy thresh-
old of 20.1 kcal/mol is used to eliminate the large number of very weak
hydrogen bonds in the spike near 0 kcal/mol.

PROTEIN FLEXIBILITY PREDICTIONS USING GRAPH THEORY 157



F, C plot, as well as focus on high-resolution, well-refined
structures for FIRST analysis, to avoid this possibility of
missing hydrogen bonds due to the misorientation of
main-chain hydrogen-bonding groups.

Flexibility Index

A flexible region consisting of many interconnected rigid
clusters within a protein may define a collective motion
having only a few independent degrees of freedom. Al-
though underconstrained, this region could be nearly rigid
and thus mechanically stable. An isostatically rigid region,
however, which contains no redundant constraints and is
only rigid, is not expected to be as stable as an overcon-
strained region. Overconstrained regions have more con-
straints than necessary to be rigid, and therefore are
considered more stable. Because of this continuum be-
tween rigidity and flexibility, a continuous index is useful.

The total number of floppy modes in a protein, denoted
by F, corresponds to the number of independent, internal
degrees of freedom. To obtain F, the six trivial rigid body
degrees of freedom are subtracted from the total number of
independent degrees of freedom. The global count of the
number of floppy modes gives a good sense of overall
intrinsic flexibility. However, a more useful measure is to
track how the degrees of freedom are spatially distributed
throughout the protein. In particular, we are interested in
locating the underconstrained or flexible regions.

The quantity, fi, is defined as a flexibility index that
characterizes the degree of flexibility of the ith central-
force bond in the protein. Let Hk and Fk, respectively,
denote the number of hinge joints (rotatable bonds) and
the number of floppy modes within the kth undercon-
strained region. Let Cj and Rj, denote the number of
central-force bonds and the number of redundant con-
straints within the jth overconstrained region, respec-
tively. The flexibility index provides a quantitative range
from most to least constrained and is given by

fi ; 5
Fk

Hk
in an underconstrained region

0 in an isostatically rigid region
2Rj

Cj
in an overconstrained region

(2)

When the ith central-force bond is a hinge joint, the
flexibility index is defined to be given by the the number of
floppy modes divided by the total number of hinges within
the underconstrained region. Because the number of inde-
pendent dihedral rotations must be less than or equal to
the number of hinge joints, the flexibility index is always
#1. When the ith central-force bond is not a hinge joint, it
is part of a rigid cluster. If the central-force bond is within
an overconstrained region, the flexibility index is assigned
a negative value with magnitude given by the number of
redundant constraints divided by the total number of
central-force bonds within the region. This number be-
comes more negative as the region becomes more overcon-
strained.

As a simple example, consider a single n-fold ring of
atoms that are connected by covalent bonds. From con-

straint counting, the number of degrees of freedom minus
the number of constraints is given by F 5 n 2 6. The
number of hinge joints is simply given by n. Therefore, the
flexibility index for a n-fold ring is given by

fi 5
n 2 6

n for each central-force bond in a n-fold ring

(3)

Note that as the ring becomes larger, the flexibility index
goes to the limit of 11; in this case, each dihedral angle is
nearly independent, and the ring is almost as flexible as a
linear chain. For a six-fold ring, the flexibility index is
zero, indicating an isostatically rigid structure. For a
three-fold ring, the ring is overconstrained, and the flexibil-
ity index is 20.2. The flexibility index of a protein can be
plotted as a function of residue number, and regions
within the plot (corresponding to segments within the
sequence) can be colored according to whether they are
coupled in motion (Fig. 6). A nice property of the flexibility
index is that it varies gradually as hydrogen bond con-
straints are added or removed.

RESULTS AND DISCUSSION

An important feature of FIRST is that it can predict the
intrinsic flexibility of a protein given a single 3-D struc-
ture. However, it is typical that upon ligand binding, the
hydrogen-bond pattern will change. Therefore, the pre-
dicted conformational flexibility using FIRST will depend
on whether the structure being analyzed is an open
(ligand-free) form, or a closed (ligand-bound) form. Crystal
contacts can also influence the flexibility of a protein, and
their influence can be assessed in two ways by FIRST: (1)
by analyzing the flexibility of the protein independent of
its crystal lattice neighbors (in which case the effects of
intermolecular hydrogen bonds are removed from analy-
sis); and (2) by comparing the flexible regions found for the
same protein crystallized in different lattice packings.
However, the general features of flexible and rigid regions
found by FIRST are remarkably consistent among differ-
ent 3-D structures (in the same ligand-binding state) for a
protein, as will be shown for HIVP, dihydrofolate reduc-
tase, and adenylate kinase.

HIV Protease

An initial application is to HIVP, a major inhibitory drug
target for current acquired immunodeficiency syndrome

Fig. 6. A: Rigid cluster decomposition of the open conformation of
human immunodeficiency virus protease (HIVP) (PDB code 1hhp). B:
Flexibility index, color-mapped onto the same HIVP structure. Four
regions of interest, a, b, g, and d, are identified for one of the dimers. C:
Flexibility index plotted versus residue number. Of the four regions, a, b,
and g are most flexible (shown red in B), while d is rigid (blue) in this open
conformation of HIVP. Parts of the sequence that are coupled in motion
are plotted in the same color; the same regions in D and E are then
colored accordingly. D: Mobility plotted versus residue for this conforma-
tion. Mobility is determined as the average crystallographic temperature
factor (B-value, or Debye–Waller factor) divided by the average atomic
occupancy, for the main-chain atoms in each residue. E: Dihedral angle
changes between the main chains of the above open conformation and
the closed conformation (Fig. 7, PDB code 1htg). The three flexible
regions identified by FIRST are also those with the greatest experimen-
tally defined mobility values and dihedral angle changes.
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Figure 6.
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(AIDS) therapy. Two ligand-free X-ray crystal structures
available for HIV protease, PDB entries 1hhp and 3phv,
are superficially very similar in structure and have similar
resolution and crystallographic residual error (2.7-Å reso-
lution for both, and an R-factor of 0.190 for 1hhp and 0.191
for 3phv). However, PROCHECK46 showed that 3phv had
significantly fewer residues with stereochemically favored
F, C values, which results in distorted main-chain hydro-
gen-bond geometries; therefore we chose 1hhp to represent
the open HIVP conformation. The open form of the protein
(PDB code 1hhp) is dominated by a single rigid cluster
shown in blue (Fig. 6A), including the base and walls of
the substrate and inhibitor binding site (cavity at
center), and three flexible regions shown as alternating-
colored bonds (each color indicating a rigid microcluster
within the flexible region). The ends of the flaps (b
region labeled in Figure 6A, residues 45–56) are known
from crystallographic and NMR structures to be impor-
tant for closing over and binding inhibitors47 and appear
as the most flexible (red) regions when the structure is
characterized by the flexibility index (Fig. 6B,C). Other
flexible regions include the base of each flap (region a,
residues 39 – 42), which may act as a cantilever, and the
g region.

The FIRST results for HIVP have been compared with
experimental measures of protein flexibility. The major
peaks in main-chain thermal mobility (B-value), mea-
sured crystallographically and shown in Figure 6D,
correlate directly with the a, b, and g flexible regions
predicted by FIRST. The region labeled d is the dimer
interface, formed by the N- and C-termini of the two,
identical protein chains. It should be noted that for
proteins with mobile domains or other moving rigid
bodies, such as a-helices, the crystallographic mobility
and FIRST results will not necessarily compare well
with B-values. Crystallographically, they appear as
mobile regions, whereas in FIRST they appear as rigid
regions flanked by flexible loops (allowing the motion).
This confusion can be avoided when NMR order parame-
ters are available for comparison, since they also indi-
cate moving rigid bodies as rigid regions flanked by
flexible loops. The Indiana Dynamical Database48 con-
tains such data for a number of proteins, including
HIVP. These data are provided for PDB entry 1bvg, a
ligand-bound form; as in the FIRST results for a differ-
ent ligand-bound structure described in Figure 7, the
base of the flaps are the most flexible region.

HIVP has been crystallized with various inhibitors
bound, resulting in a closed conformation with the flaps
lowered. The main-chain dihedral angle (F, C) changes
(similar to the analysis reported by Korn and Rose49)
observed for crystal structures of the open (entry 1hhp)
and closed (entry 1htp) conformations are shown in
Figure 6E. The FIRST-predicted flexible regions also
directly correspond with the regions of greatest dihedral
angle change. In the three flexible regions (a, b, and g),
the flexibility is associated with a flip in at least one
dihedral angle (defined as a change of more than 60°)
within a rigid b-turn in the center of each flexible region

(Fig. 6A,E). The results here are consistent with the
motion observed by interpolation between different HIVP
crystal structures50 and an earlier dihedral analysis for
a different pair of HIVP structures49 indicating that
large changes at residues 40, 50, and 51 in the a and b
regions result in a large, concerted movement of the
flaps. Flexibility of the g region has not been emphasized
in other studies of HIVP; however, it is known that
drug-resistant mutants of the protease include two
residues that pack against the g region, 63 and 71, with
residue 63 proposed to induce a conformational perturba-
tion.51,52 Thus, conformational coupling between the g
region and the flaps, through the g–a loop interactions,
may explain why mutations in the g region, which are
distal from the active site, cause resistance to drug
binding.

Ligand binding restricts the motion of the flaps through
new hydrogen bonds linking the two flaps to each other
and to the ligand. Some of these hydrogen bonds between
the flaps and ligand are mediated by an conserved water
molecule found in retroviral but not mammalian homologs
of HIVP,53 providing a useful basis for designing more
HIV-specific drugs. To compare the influence of ligands on
HIVP flexibility, there were a number of ligand-bound
structures of good stereochemistry from which to choose.
For brevity, here we show the results from PDB entry
1htg, with GR137615 bound, to represent the closed form
of HIVP. (We have also analyzed two other ligand-bound
structures, 1hiv and 1dif, and found the influence of these
ligands on protein flexibility to be substantially similar.)
Unlike the open form, the closed structures were resolved
crystallographically as dimers; thus, independent struc-
tural information is available for the two subunits of the
dimer. This means it is possible to assess the influence of
different side-chain conformations in the two halves (due
to ligand interactions, thermal fluctuations and environ-
mental differences) in terms of their effects on the hydro-
gen-bonding network and flexibility. The left and right
sides of HIVP in Figure 7 indicate that the only substantial
difference in their flexibility is caused by the asymmetry of
the ligand bound (at center).

Comparison of this ligand-bound structure with the
open HIVP also demonstrates how a ligand can rigidify
part of the protein through new hydrogen bonds even
though the ligand itself is not rigid (note black bonds
indicating H-bonds between the protease flaps in Figure
7A, and that the flaps are now rigidified), while making
other parts of the protein more flexible. In particular, note
the dimer interface, where inter-subunit rotation occurs
upon ligand binding, breaking some of the interfacial
stabilizing hydrogen bonds, and the loop to the right of the
binding cavity, shown as a flexible (orange) region of the
main-chain ribbon in Figure 7B. This loop flexibility is not
reflected in the other HIVP subunit, due to ligand asymme-
try. Flexibility of the dimer interface in a ligand-bound
structure is also a prominent feature found by NMR54 and
MD analyses55; MD also identifies flap flexibility in the
ligand-free conformation.
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The influence of water is easily seen in a comparison of
the liganded cases. A specific water molecule (WAT301)
positioned between the b flaps and the ligand is conserved
in most HIVP ligand-bound structures.53 In this rigid
region analysis, we found the inclusion of this water
essential to rigidify the b flaps. This particular water
molecule serves as a hydrogen acceptor from residue 50 of
each protein chain and a hydrogen donor to the ligands.
Adding one water molecule introduces four hydrogen
bonds to the structure, with energies within the range of
21.5 to 27.5 kcal/mol. For both 1htg and 1dif, the b flaps
become flexible without the intermolecular hydrogen bonds
created by this water molecule. We have only included
buried water molecules making intermolecular hydrogen
bonds in HIVP, as these tend to be reliably assigned
between structures, whereas surface water molecules are
unevenly assigned in many of the crystal structures of
HIVP, as well as being variable in crystallographic tem-
perature factor.

Dihydrofolate Reductase

By trapping different ligand-bound states crystallo-
graphically, Sawaya and Kraut56 noted five conforma-
tional states for Escherichia coli dihydrofolate reductase
(DHFR) during its catalytic cycle. We analyzed three of
these crystallographic structures (PDB codes: 1ra1, 1rx1,
and 1rx6) with the FIRST algorithm. These three struc-
tures correspond to the open, occluded, and closed confor-
mations of DHFR, as shown in Figure 8. The Ca traces are
colored according to each residue’s flexibility index, fi, with
the most flexible regions colored red and the most rigid
colored blue.

According to the previous study,56 the regions of
greatest interest are the rotations of two major subdo-

Fig. 7. A: Rigid cluster decomposition of the closed conformation of
human immunodeficiency virus protease (HIVP) (PDB code 1htg). B:
Flexibility index plot of the same, closed conformation of HIVP (PDB code
1htg). Four regions of interest, a, b, g, and d, are identified for one of the
monomers. Contrast the change in rigidity for these regions between this
ligand-bound structure and the ligand-free case (Fig. 6).

Fig. 8. Flexibility map of dihydrofolate reductase for the open confor-
mation (PDB code 1ra1) (A) and for the closed conformation (PDB code
1rx1) (B). C: Occluded conformation (PDB code 1rx6). Shown in green
are the ligands bound in these reaction pathway intermediates. Two loops
experimentally determined to be flexible, M20 and bF–bG, are also noted.
The motion of the M20 loop is essential to accommodate a variety of
ligands during catalysis. The flexible bF–bG loop participates in ligand-
induced conformational changes. At the top of the graph is the scale for
the flexibility index used to map color onto the Ca trace. The scale runs
from red (flexible) through gray (isostatic) to blue (rigid).
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mains: the adenoside binding subdomain and the loop
subdomain. The M20 and bF–bG loops of the loop
subdomain are denoted in Figures 8 and 9. Studies by
Miller and Benkovic57 concluded that the flexibility of
these loops is interrelated, such that the flexibility of the
outer bF–bG loops guides the conformation of the M20
loop. It is this correlated flexibility that gives DHFR
ligand specificity. We would expect the regions that
move the most, and that are important for binding, to
appear flexible in the FIRST analysis, at least in the
open conformation. Figure 8A shows that the M20 loop
is detected by FIRST to be fully flexible, but in the closed
form (Fig. 8B), this loop has moved and become partially
locked into place. Comparing all three conformations
quantitatively in Figure 9, the residues within these
two mobile loops tend to be most flexible, and this
flexibility is fairly independent of conformation being
analyzed. This relates to a functional requirement for
these loops to remain flexible during the catalytic cycle.

The flexible region around residue 88 in all three
conformations of Figure 9 corresponds to a hinge be-
tween the two subdomains. Similarly, the flexible region
found by FIRST around residue 70 (open triangles in the
flexibility index plot, Fig. 9) is within the adenoside
binding subdomain and has also been identified as
flexible by NMR techniques.58 Plots of crystallographic
mobility and regions of greatest main-chain dihedral
angle change (data not shown) for the three DHFR
structures in Figure 8 are remarkably consistent be-
tween the structures and also agree with FIRST results
that the most flexible regions are in the M20 loop and
the bF–bG loop. We have analyzed several other DHFR
structures by FIRST (PDB entries 1rx2, 3, 4, and 5) and
have found substantial agreement with the above conclu-
sions. In general, changes in ligands between these
structures can influence the flexibility of their neighbor-
hood in the protein, but the major features of flexibility
remain consistent.

Fig. 9. Flexibility index plot for the three conformations of dihydrofolate reductase (DHFR) shown in Figure
8. The value of the flexibility index as defined in eq. (2), plotted versus residue number (a monochrome version
of the type of plot shown for human immunodeficiency virus protease (HIVP) in Fig. 6C). The two
experimentally determined loops, M20 and bF–bG, are shown at the top of the plot, and correspond to highly
flexible regions. For each collective motion within the structure, a unique symbol is plotted.

162 D.J. JACOBS ET AL.



Adenylate Kinase

Another protein whose motion has been studied experi-
mentally is adenylate kinase.59–61 Previous work indi-
cates that adenylate kinase uses hinges rather than shear
motions for conformational change. This intrinsic, large-
scale hinge motion upon ligand binding is easily identifi-
able in both the open and closed conformations analyzed
by FIRST, as indicated in Figure 10 by gold arrows.

Several helices at the extreme right of Figure 10 move in
like fingers via hinges defined as the most flexible (red)
portions of the protein by FIRST.

Adenylate kinase binds two ligands, ATP and AMP, in a
two-step mechanism. Unfortunately, structures of adenyl-
ate kinase from the same species are not available for all
three steps (ligand-free, followed by two binding/conforma-
tional change events). By comparing enzymes from differ-

Fig. 10. Flexibility plot of adenylate kinase for the open conformation (PDB code 1dvr) (A) for the closed
conformation (PDB code 1aky) (B). C: Difference in main-chain dihedral angles between these two
conformations, indicating the locations of large, localized conformational changes. Ligands bound to these
structures are shown in green tubes. The open state (A) has only adenosine triphosphate (ATP) bound. In the
closed state (B), the ligand, P1,P5-bis(adenosine-59-)pentaphosphate (AP5A) mimics the roles of AMP and
ATP binding concurrently. Dark blue corresponds to highly overconstrained and rigid, with a flexibility index;
bright red corresponds to highly flexible. All labeled regions are discussed in the text.
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ent species, four hinges were previously defined to contrib-
ute to the conformational change between open and ligand-
bound forms.59 These hinges move in a concerted way to
account for the large conformational change closing the lid
domain (residues 131–165) over the ligand. Figure 10A,B
shows structures with ligands bound to this domain and
not this initial ligand-binding step.59 However, the peak in
main-chain dihedral change shown around residue 167 in
Figure 10C corresponds to a conformational switch made
by the red flexible loop (part of the lid) in Figure 10A
between structures. Crystallographic mobility analysis for
the open structure (10A) and the closed structure (10B) are
generally in good agreement with FIRST results, the only
difference being that regions between residues 135 and 160
appear crystallographically mobile in the closed structure.

Closing of the lid domain is associated with the binding
of ATP (green tubes at center in Fig. 10A). Binding of the
ligand AP5A (green tubes, Fig. 10B) produces the fully
closed conformation of adenylate kinase and locks many of
the domain linking hinges (a–f), as seen by the transition
between flexible (red) and rigid (blue) regions in Figure
10A,B. The NMPbind site is where the part of AP5A that is
nonoverlapping with ATP binds, and this site is formed by
the interface between the two domains as they clamp down
on the inhibitor.61

Comparing these structures, FIRST shows that the
flexibility of the NMPbind domain (especially hinges a, e,
and f) decreases upon AP5A binding to this domain. The
flexible linkage (b) between helices a3 and a4 around
residue 62 (identified in the Fig. 10C plot of change in F, C
angles between the open and closed structures in Fig.
10A,B) seems to account for a large part of the motion
transforming the open to the closed conformation. This
region (b in Fig. 10A,B) is found to decrease in size but
remains flexible in the closed conformation. The persistent
flexibility in the closed conformation hints at the reversibil-
ity of the motion required for catalytic turnover. Even in
the ATP-bound closed lid conformation exhibited by both
of these structures, certain key hinges59,60 remain flexible.
For example, hinges c and d between helices a4 and a5
remain flexible in both states. Thus, FIRST results corre-
late well with the crystallographically observed conforma-
tional changes upon ligand binding for the complex mo-
tions within adenylate kinase.

SUMMARY

A novel distance constraint approach is introduced for
characterizing the intrinsic flexibility of a protein. The
underlying physical and mathematical assumptions are
outlined and implemented computationally in the FIRST
software. FIRST determines the floppy inclusion and rigid
substructure topography of a given protein structure,
based on a set of distance constraints determined by the
covalent and hydrogen bonding network within a single
conformation of the protein. A flexibility index is intro-
duced as a continuous measure for quantifying the flexibil-
ity or stability of each bond within the protein, based on
the FIRST identification of the density of floppy modes as
well as the density of redundant bonds within the protein.

There are several advantages of FIRST relative to
previous methods for analyzing protein flexibility. FIRST
calculations can be done virtually in real time (a few
seconds of CPU time) once the bond network has been
defined. Analysis of a single protein structure is able to
indicate regions likely to undergo conformational change
as part of the protein’s function. For a given set of distance
constraints, the rigid regions and the flexible joints be-
tween them are determined precisely. The ability to deter-
mine coupled motions very quickly among the dihedral
angles of a flexible region gives FIRST an advantage over
other methods. Collective motions, in which changing one
dihedral angle will influence the other dihedral angles
within the region, are localized within the flexible regions
of the protein. Analysis of the relative flexibility within
HIV protease, dihydrofolate reductase, and adenylate
kinase, even when performed on a single structure, cap-
tures much of the functionally important conformational
flexibility observed experimentally between different li-
gand-bound states. A distribution version of the FIRST
software is in preparation and will be available through
the authors.
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