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Abbreviation

RMSD D root-mean-square coordinate difference.

1 INTRODUCTION

Distance geometry is the mathematical basis for a geometric
theory of molecular conformation.1 This theory plays a role in
conformational analysis analogous to that played in statistical
mechanics by a hard-sphere fluid . . . which can in fact be
regarded as the distance geometry description of a mono-
atomic fluid. More generally, a distance geometry description
of a molecular system consists of a list of distance and chirality
constraints. These are, respectively, lower and upper bounds
on the distances between pairs of atoms, and the chirality of
its rigid quadruples of atoms (i.e., R or S relative to some
given order). The distance geometry approach is predicated
on the assumption that it is possible to adequately define the
set of all possible (i.e., significantly populated) conformations,
or conformation space, of just about any nonrigid molecular
system by means of such purely geometric constraints. By
Occam’s razor, we contend that any properties of the system
that can be explained by such a simple model should be
explained that way.

Distance geometry also plays an important role in the devel-
opment of computational methods for analyzing distance geo-
metry descriptions. The goal of these calculations is to deter-
mine the global properties of the entire conformation space,
as opposed to the local properties of its individual members.
This is done by deriving new geometric facts about the sys-
tem from those given explicitly by the distance and chirality
constraints, a process known more generally as geometric rea-
soning. Although numerous constraints can be derived from
knowledge of the molecular formula, in many cases (e.g., glob-
ular proteins) additional noncovalent constraints are needed in
order to define precisely the accessible conformation space.
These must be obtained from additional experiments, and thus
one of the best-known applications of distance geometry is the
determination of molecular conformation from experimental

data, most notably NMR spectroscopy. Other important appli-
cations include enumerating the conformation spaces of small
molecules, ligand docking and pharmacophore mapping in
drug design, and the homology modeling of protein structure.

2 THEORY

One of the most significant developments in distance geo-
metry over the last few years has been the realization that the
underlying theory is actually a special case of a more general
theory, known as geometric algebra. This more general the-
ory is certain to find manifold applications in computational
chemistry, not only in the analysis of simple geometric mod-
els of molecular structure, but also in more complete classical
and even quantum mechanical models. For these reasons we
shall begin with a brief introduction to the geometric algebra
of a three-dimensional Euclidean vector space; a more detailed
account, including its applications in classical mechanics, may
be found in Ref. 2.

2.1 Geometric Algebra

Although its origins can be traced back over 150 years to
the work of the German schoolmaster Hermann Grassmann,3

geometric algebra remains virtually unknown outside of a few
specialized branches of mathematics and theoretical physics
(where it is more commonly known as Clifford algebra,
after one of its earliest developers). The three-dimensional
Euclidean case is nevertheless not very difficult, and is all
that is needed in order to begin to appreciate its utility. In
reading the following introduction, it should be kept in mind
that geometric algebra simultaneously generalizes, and hence
unifies, most of the algebraic structures with which the reader
is probably already familiar, including the real and complex
numbers, vector algebra, and Hamilton’s quaternions. It is not
a substitute for linear algebra or differential calculus, but rather
enriches them with new geometric content.

2.1.1 The Rules of the Game

The geometric product of vectors a, b, and c is an associa-
tive product, distributive with respect to vector addition, such
that the square of any vector is the same as its length squared:

�ab�c D a�bc�, a�b C c� D ab C ac,

�a C b�c D ac C bc, and a2 D jjajj2 �1�

Note we have not required this multiplication to be commuta-
tive, i.e., ab 6D ba in general.

One immediate consequence of this definition is that every
nonzero vector a has an inverse, namely

a�1 D a/a2 �2�

Moreover, by the law of cosines, the usual inner product of
vectors is

ažb D 1
2 �jjajj2 C jjbjj2 � jja � bjj2�

D 1
2 �a

2 C b2 � �a � b�2�

D 1
2 �ab C ba� �3�
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which is just the symmetric part of their geometric product ab.
Thus it is natural to define the outer product of two vectors as
the antisymmetric part of their geometric product, i.e.,

a ^ b D 1
2 �ab � ba� �4�

This outer product is clearly anticommutative, meaning a ^
b D �b ^ a, and vanishes if and only if a D ˛b for some
scalar ˛. The outer product a ^ b cannot be a vector, since
inversion in the origin (i.e., multiplying all vectors by �1)
does not change it; neither can it be a scalar, since then
the geometric product ab D ažb C a ^ b would also be a
scalar (which for linearly independent vectors a and c would
contradict the above associativity condition). We can only
conclude that the outer product of two vectors is a new entity,
called a bivector.

Given an orthonormal basis e1, e2 of e3 our vector space,
we can expand any outer product using anticommutivity as
follows:

a ^ b D �a1e1 C a2e2 C a3e3� ^ �b1e1 C b2e2 C b3e3�

D �a1b2 � b1a2�e1e2 C �a3b1 � b3a1�e3e1

C �a2b3 � b2a3�e2e3 �5�

This shows that every bivector can be expanded in terms of
the three elementary bivectors e1 ^ e2 D e1e2, e3 ^ e1 D e3e1,
and e2 ^ e3 D e2e3. Moreover, it is easily shown that

�˛e1e2 C ˇe3e1 C �e2e3�
2 D �˛2 � ˇ2 � �2 �6�

and hence these three bivectors must be linearly independent,
so that the expansion is unique. This shows, in particular, that
the space of bivectors is likewise three-dimensional.

If we similarly define the outer product of three vectors as
their antisymmetrized geometric product, i.e.,

a ^ b ^ c D 1
6 �abc � acb C cab � cba C bca � bac� �7�

a similar though longer calculation shows that a ^ b ^ c D
det�a, b, c�e1e2e3, where the determinant is of the matrix
whose columns are the coordinates of a, b, and c versus the
basis e1, e2, and e3. It follows that all trivectors are multiples
of the trivector  D e1e2e3, which will henceforth be called
the unit pseudo-scalar. This has the interesting property of
behaving like the imaginary unit, since

2 D �e1e2e3�
2 D ��e1e2e3��e3e2e1�

D ��e1e2�e2
3�e2e1� D �e1e2

2e1 D �e2
1 D �1 �8�

In keeping with the fact that space is three-dimensional, all
outer products of four or more vectors must be zero.

Any element of the algebra, or multivector, can be uniquely
expanded as a sum of a scalar, a vector, a bivector, and a
pseudo-scalar, for a total dimension of eight. The multilinearity
of the geometric product shows that scalars and bivectors are
unchanged on inversion in the origin, whereas vectors and
trivectors change sign. This fact also implies that the product
of an even number of vectors has no vector or trivector part,
whereas odd products have no scalar or bivector part. This is
described by saying that the product preserves parity. Another
interesting transformation reverses the order of the vectors
in a product, e.g., abc D cba. It is easily seen that scalars
and vectors are unchanged by reversion, while bivectors and
trivectors change sign.

Together, these facts imply that abc � abc is equal to the
trivector 2a ^ b ^ c. More generally, if we define the outer
product of a vector a with a bivector b ^ c to be the symmetric
part

1
2 �a�b ^ c�C �b ^ c�a� �9�

of their geometric product, a straightforward calculation shows
that

a ^ �b ^ c� D a ^ b ^ c D �a ^ b� ^ c �10�

Thus the outer product is also associative.
It is also possible to define various ‘mixed’ products, which

are combinations of inner and outer products. Of particular
interest is the inner product of a vector a with a bivector b ^ c,
which is defined as the antisymmetric part of their geometric
product. In this case, a direct calculation yields the vector

až�b ^ c� D 1
2 �a�b ^ c�� �b ^ c�a� D �ažb�c � �ažc�b �11�

Similarly, the inner product of two bivectors is defined as the
symmetric part of their geometric product, in which case we
have:

�a ^ b�ž�d ^ c� D až�bž�d ^ c��

D �ažc��bžd�� �ažd��bžc�

D det
[

ažc ažd
bžc bžd

]
�12�

Finally, the inner product of two trivectors is:

�a ^ b ^ c�ž�f ^ e ^ d� D det


 ažd aže ažf

bžd bže bžf
cžd cže cžf


 �13�

Determinants of matrices of inner products as above are
commonly called Gramians.

2.1.2 Geometric Interpretation

The utility of the above, purely formal, algebraic system lies
in the fact that all the quantities appearing in it have distinct
geometric meanings. This enables us to translate such basic
geometric relations as congruence, perpendicularity, incidence,
etc., into algebraic equations, and then to use the machinery
of geometric algebra to derive new relations. For example,

a2 D b2 , congruent, or

ažb D 0 , perpendicular �14�

This geometric interpretation also enables the entities that
appear in the algebra to represent many different physical
quantities in very natural ways.2

Because most scientists are familiar with Gibbs’ vector
algebra, the easiest way to introduce this interpretation is to
show how Gibbs’ algebra fits in to the more general geometric
algebra introduced above. Since the inner product is already
part of Gibbs’ vector algebra, we shall begin with the outer
product of two vectors. Using the above formula for a ^ b
together with the identity

�e1e2 D �e3e2e1�e1e2 D �e3e2�e2
1e2 D e3e2

2 D e3 �15�
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(and similar identities involving e3e1 and e2e3), we find that

��a ^ b� D �a2b3 � b2a3�e1 C a3b1 � b3a1�e2 C �a1b2 � b1a2�e3

�16�
This is the usual expression for Gibbs’ vector cross product
a ð b in terms of coordinates, which is of course a vector
perpendicular to the plane containing a and b, of length equal
to the area of the parallelogram whose sides are a and b.

Since vectors are viewed as directed line segments, this
makes it natural to view a bivector as a directed plane segment.
The direction, in this case, specifies which side of the plane
is ‘up’; in a right-handed coordinate system, this is the same
as the side that the cross product points away from. Unlike
the cross product, however, the direction of a bivector is not
changed by inversion in the origin. Because we have shown
that 2 D �1, the inverse relation follows immediately:

�a ð b� D a ^ b �17�

More generally, multiplication by the unit pseudo-scalar maps
vectors (bivectors) to their duals, which lie in the planes (lines)
perpendicular to them, and have the same magnitudes.

Let us now consider Gibbs’ triple product, which is a scalar
equal to the signed volume of the parallelopiped spanned by
the three vectors. Using the fact that pseudo-scalars commute
with everything in the algebra:

až�b ð c� D � 1
2 �a�b ^ c�C �b ^ c�a�

D � 
4 �abc � acb C bca � cba� D � �a ^ b ^ c�

18��

This makes it natural to interpret the outer product of three
vectors as an directed space segment, where the direction now
refers to its chirality relative to the coordinate axes. It further
implies that the geometric and inner product of two trivectors
both equal the negative of the product of the volumes of their
space segments.

Now take an arbitrary plane in space, e.g., e1e2 D e1 ^ e2.
If a D a1e1 C a2e2 is any other vector in this plane, then
e1a D e1ža C e1 ^ a D a1 C a2e1e2, where

�e1e2�
2 D ��e1e2��e2e1� D �1 �19�

It follows that, relative to some fixed vector in the plane,
every other vector in the plane can be regarded as a ‘complex
number’. In particular, multiplication by the imaginary unit
of the plane e1e2 rotates all vectors in the plane by one
quarter turn. There is a different imaginary unit for every plane,
however, which is why we do not give it a special symbol as
we did the pseudo-scalar .

The inner product of a vector and a bivector can thus
be interpreted as a projection onto the plane of the bivector
followed by a quarter turn and scaling by the magnitude of the
bivector. The projection itself can be recovered by multiplying
it by the inverse bivector, i.e.,

�až�e1e2���e2e1� D �a1e2 � a2e1��e2e1� D a1e1 C a2e2 �20�

where a1 D aže1 and a2 D aže2. To interpret the inner product
of two bivectors, on the other hand, we use the fact that any
two planes intersect in a line, and let one of the factors of
each bivector lie on this line. Then by the law of cosines for
spherical trigonometry,

�a ^ b�ž�b ^ c� D �ažc�jjbjj2 � �ažb��bžc�

D �cos��ac �� cos��ab� cos��bc ��jjajj jjbjj2jjcjj

D ��sin��ab� sin��bc � cos����jjajj jjbjj2jjcjj
D �jja ^ bjj jjb ^ cjj cos��� �21�

where � is the dihedral angle between the planes a ^ b and
b ^ c.

Now take an arbitrary unit vector e, and consider the
expression

�eae D �e�aže C a ^ e� D a � 2�aže�e �22�

This is just the reflection of a in the plane perpendicular to
e. It is well known that the product of two reflections is a
rotation about the axis in which their planes intersect, and by
twice the smaller angle between the planes. Hence for any two
unit vectors e, f, the expression

�ef�a�ef� D �ežf � e ^ f�a�ežf C e ^ f�

D RaR �R 
 ežf C e ^ f� �23�

describes a rotation of the vector a, where the angle of rotation
is 2 arccos�e ž f�. It follows that any rotation can be represented
by the sum of a scalar and a bivector

R D � C � Ð r, where �2 C �2 D 1 , RR D 1 �24�

and r is a unit vector along the axis of rotation. This repre-
sentation is unique up to sign.

The products of even numbers of vectors form a subalgebra
of the geometric algebra, called the even subalgebra. If we
let I D e2e3, J D e3e1 and K D e1e2 be our standard bivector
basis, we find that

I2 D J2 D K2 D �1, JI D K D �IJ,

IK D J D �KI, and KJ D I D �JK �25�

Up to sign, these are the relations that define Hamilton’s
quaternions. If we represent each vector a by its dual A D a,
we thus obtain Cayley’s formula

RAR D RaR �26�

for rotations in terms of quaternions. It follows that the even
subalgebra can be identified with Hamilton’s quaternions, and
used to describe the rotations of vectors in the same way.

2.2 Invariant Theory

The scalar-valued expressions in the geometric algebra
generated by the interpoint vectors are of particular interest,
because they are automatically invariant under translations and
rotations. The theory of such invariant expressions shows that
they can always be reduced to multivariate polynomials in the
squared interpoint distances together with the signed volumes
of tetrahedra. The relations among these fundamental invari-
ants, obtained from Cayley Menger determinants,4,5 provide
general equations for use in geometric reasoning, and these
determinants can likewise be viewed as entities within geo-
metric algebra. In this section we shall demonstrate these facts,
and show how these quantities can be interpreted within the
geometric algebra of three dimensions.

2.2.1 The Fundamental Invariants

Invariant theory is a branch of mathematics that deals
with polynomials that are invariant (i.e., whose values are
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preserved) under a group of transformations of their variables.6

In the case of the three-dimensional Euclidean group consisting
of all translations and proper rotations of the Cartesian coor-
dinates, the squared distance between points, and the signed
volumes spanned by tetrahedra, are obvious examples of such
invariants. The first fundamental theorem of invariant theory
for the Euclidean group states that these two types of invari-
ants constitute a complete system, meaning that any invariant
can be written as a multivariate polynomial in the squared
distances and signed volumes.7

The first item of business is to show how any set of
multivectors in the geometric algebra of three dimensions can
be characterized, up to rotation, by a system of scalar-valued
expressions in these fundamental invariants. Any multivector
can always be separated into its scalar, vector, bivector, and
trivector parts. The scalar part is ready to go, while the trivector
part can be converted to a scalar simply by multiplying it by
the unit pseudo-scalar. We next observe that any set of vectors
is determined, up to rotation, by their Gram matrix of inner
products. This is easily seen by taking any maximal linearly
independent subset a, b, . . . , c (whose Gramian is necessarily
nonzero), and noting that the inner products of any other vector
x with this basis determine the coordinates of that vector versus
the basis, via the normal equations:


a2 ažb . . . ažc

ažb b2 . . . bžc
...

...
. . .

...

ažc bžc . . . c2






xa
xb
...

xc


 D




ažx
bžx
...

cžx


 �27�

Mixed sets of vectors and bivectors can likewise be charac-
terized by the Gram matrices of the vectors together with the
duals of the bivectors; as shown previously, the inner product
of a vector with the dual of a bivector is a triple product.

Using the distributive properties of inner and outer prod-
ucts, any products of linear combinations can be expanded
into linear combinations of products. Thus any scalar-valued
expression can be expanded into a polynomial in the inner
products of pairs of vectors, bivectors, or trivectors, together
with scalars and triple products. Inner products of bivectors
and trivectors can be further expanded into polynomials in the
inner products of vectors only, using the equivalence to Grami-
ans derived in the previous section. Moreover, if two triple
products occur in any term, we can likewise expand them as a
Gramian into a polynomial in the vector inner products, since

��a ^ b ^ c����d ^ e ^ f�� D 2�a ^ b ^ c��d ^ e ^ f�

D �a ^ b ^ c�ž�f ^ e ^ d� �28�

By this means we can reduce any scalar-valued expression
to a polynomial in the inner products of single pairs of
vectors, together with vector triple products, that is only linear
in the triple products. Thus any set of multivectors can be
characterized, up to rotation, by specifying the scalar values
of a system of such multivariate polynomials.

Any translation-independent expression in geometric alge-
bra can be written in terms of the interpoint vectors only, but it
can be quite difficult to actually perform this rewriting. Thus to
be assured of translation-independence, it is best to work only
with interpoint vectors (rather than vectors from an arbitrary
origin) throughout the calculations. Because of the relation
�a � b�C �b � c� D �a � c�, one can choose one’s interpoint

vectors in many different ways. This in turn leads to many
different possible systems of polynomials for the same set of
multivectors, some of which may be far more complicated than
necessary.

These ambiguities in our choice of interpoint vectors can
be eliminated by replacing all the inner products of interpoint
vectors by linear combinations of squared distances, using the
generalized law of cosines

�a � b�ž�c � d� D 1
2 �Dad C Dbc � Dac �Dbd�

D 1
2 �jja � djj2 C jjb � cjj2 � jja � cjj2 � jjb � djj2�

�29�
(where Dad D jja � djj2, etc.), which is easily verified by
expanding both sides and cancelling terms. Thus we are able
to reduce any polynomial in the inner products of interpoint
vectors to a polynomial in the squared distances. In the event
that we are working with vectors from a common origin,
application of the above relation with b D d set to the origin
will result in a polynomial with no squared distances to
the origin in it if and only if the original expression was
translation-independent.

In summary, we have shown that any scalar-valued, trans-
lation and rotation-independent expression in the geometric
algebra of three-dimensions can be written in terms of the
squared distances and signed volumes, and hence any set of
multivectors can also be characterized, up to translation and
rotation, by the values of a system of such expressions.

2.2.2 The Fundamental Syzygies

The number of squared distances and signed volumes
among a set of N three-dimensional points generally exceeds
the number of internal degrees of freedom 3N� 6. For exam-
ple, if one fixes all but one of the ten distances among a set
of five points, the remaining distance can assume at most two
possible values. The second fundamental theorem of invari-
ant theory states that these algebraic relations, or syzygies as
they are called, among the squared distances and oriented vol-
umes can be written as multivariate polynomials in a complete
system of syzygies. While it has never actually been proven
in full generality, a safe bet is that certain determinants in
the squared distances, known as Cayley Menger determinants,
together with a few auxilliary relations connecting them to the
signed volumes, constitute a complete system of syzygies for
Euclidean geometry.

The most important such relations turn out to be conse-
quences of the fact that, in three dimensions, the hypervolume
spanned by any four interpoint vectors is always zero, i.e.,

�b � a� ^ �c � a� ^ �d � a� ^ �e � a� D 0 �30�

We can convert this into a scalar-valued expression by taking
the inner product with its reverse. The resulting Gramian can
be Laplace expanded to a polynomial in the inner products
of the four vectors, which in turn can be converted into a
polynomial in the squared interpoint distances as above. The
vanishing of this polynomial is our first syzygy among the
squared distances.

These polynomials tend to be rather complicated, and hence
it is fortunate that they can be written simply in terms of
Cayley Menger determinants. To see how this works, consider
the inner square of a single pair of interpoint vectors x D b � a
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and y D c � a. This can be expanded as a Gramian which, by
the Cauchy Schwarz inequality, is always nonnegative:

0 � �x ^ y�ž�y ^ x� D det
[

x2 xžy
xžy y2

]
�31�

We can augment the determinant with a pair of unit row/colum-
ns without changing its value, and then use elementary
row/column operations to change variables, as follows:

det




1 0 0 0

0 1 0 0

0 0 x2 xžy
0 0 xžy y2




D �det




0 1 1 1

1 0 0 0

1 0 x2 xžy
1 0 xžy y2




D �det




0 1 1 1

1 0 � 1
2 x2 � 1

2 y2

1 � 1
2 x2 0 xžy � 1

2 �x
2 C y2�

1 � 1
2 y2 xžy � 1

2 �x
2 C y2� 0


 �32�

This last determinant can be rewritten as a three-point
Cayley Menger determinant:

� det




0 1 1 1

1 0 �Dab/2 �Dac/2
1 �Dab/2 0 �Dbc/2
1 �Dac/2 �Dbc/2 0




D � 1
4 det




0 1 1 1

1 0 d2
ab d2

ac

1 d2
ab 0 d2

bc

1 d2
ac d2

bc 0


 �33�

where x2 D �b � a�2 D Dab D d2
ab, etc. Finally, the polyno-

mial in the distances obtained by expanding this determinant
can be factorized as:

1
4 �dab C dac C dbc��dab C dac � dbc��dac C dbc � dab�

ð �dbc C dab � dac� �34�

The nonnegativity of the determinant is thus equivalent to the
three triangle inequalities among the points, i.e.,

dab � dac C dbc dac � dbc C dab dbc � dab C dac �35�

In the following, we shall denote such a symmetric three-
point Cayley Menger determinant by D�a, b, c�. The general
definition of an N-point Cayley Menger determinant is

D�a, b, . . . , c;p, q, . . . , r�

D 2
(�1

2

)N
det




0 1 1 . . . 1

1 Dap Daq . . . Dar
1 Dbp Dbq . . . Dbr

...
...

...
. . .

...

1 Dcp Dcq . . . Dcr




�36�

A derivation similar to that used above for the symmetric three-
point case shows that

D�a, b, . . . , c;p, q, . . . r�

D ��b � a� ^ . . . ^ �c � a��ž��q � p� ^ . . . ^ �r � p�� �37�

Thus a four-point Cayley Menger determinant is equal to the
product of the signed volumes spanned by the parallelepipeds
whose sides are the vectors from one of the points to the
other three (in each of the two point sets separately). This is
the syzygy that connects the squared distances to the signed
volumes. The five-point Cayley Menger determinants, on the
other hand, are the Gramians of four interpoint vectors, and
hence vanish identically whenever the distances are three-
dimensional, as described at the beginning of this section.

Although it is much more difficult to prove, it turns out
that the nonnegativity of the symmetric two-, three-, and
four-point Cayley Menger determinants, together with the
vanishing of all higher determinants, is also sufficient for
any symmetric matrix of real numbers with zeros down the
diagonal to be a matrix of squared distances in a three-
dimensional Euclidean space. In fact, assuming that none
of the distances are zero, it is sufficient if all five-point
Cayley Menger determinants vanish, with the exception of
a single type of six-point counterexample.1,4,5

Note that our derivation of the equivalence of Cayley Men-
ger determinants and the Gramians of interpoint vectors aug-
mented the Gram matrix by two additional rows and columns.
Thus the matrices in Cayley Menger determinants can like-
wise be regarded as Gram matrices among null vectors in a
five-dimensional space, which turns out to have a Minkowski
metric (like space-time in the theory of relativity). The vectors
in this five-dimensional space constitute homogenous coor-
dinates for an extension of Euclidean geometry, known as
Mobius sphere geometry, which includes spheres and planes
as its elemental objects along with points. A plane is a spe-
cial case of a sphere, whose center lies ‘at infinity’, and
this point-at-infinity corresponds to the border of ones in a
Cayley Menger determinant. The translations of Euclidean
points in this space are rotations relative to the Minkowski
metric! Further details may be found in Refs. 8 10 and refer-
ences cited therein.

In closing, we note that the signed volumes themselves are
not independent, but satisfy a linear relation among each set of
five points. For ease of presentation we shall assume that one
of these points is located at the origin. Then this relation is
readily derived by expanding the (dual of) the outer product:

�b � a� ^ �c � a� ^ �d � a� D b ^ c ^ d � a ^ c ^ d

C a ^ b ^ d � a ^ b ^ c �38�

That is, if we order the five points arbitrarily, and alternately
add and subtract the signed volumes of the quadruple obtained
by taking out each point in turn, we obtain zero. Suprisingly,
this relation turns out to be a consequence of the foregoing
relations between the signed volumes and squared distances,
and hence does not need to be imposed as an independent
condition.1

3 ALGORITHMS

The above theory is useful in gaining insight into, and
closed form solutions for, simple problems involving small
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molecules, but the scope of its applications is limited by sheer
algebraic complexity. Thus we are forced to resort to numerical
methods for finding isolated solutions to larger problems.
In order to gain at least some insight into the structure of
the conformation space as a whole, we generally attempt
to find a number of different solutions (i.e., conformations)
that satisfy the constraints. Such a set of conformations is
called a conformational ensemble. Providing this ensemble is
sufficiently large and random, any geometric features that are
common to all its members can be assumed to be necessary
consequences of the constraints. This constitutes an inductive
approach to geometric reasoning, as opposed to the deductive
approaches considered above.

While one could require these conformations to satisfy a
wide variety of geometric conditions by means of constraints
on suitable polynomials in the interatomic squared distances
and signed volumes, it turns out that the simplest possible
such constraints are also the most widely useful. These are
lower and upper bounds on the interatomic squared distances
themselves, together with the signs (C1,�1, or 0) of the
volumes of selected quadruples of atoms. The latter, called
chirality constraints, determine the chirality of the quadruple,
or force it to be planar if the sign is zero. The totality
of constraints of this form is called a distance geometry
description. Experience has shown that most ‘conformation
spaces’ of practical interest in chemical problems can be
accurately described by means of these simple constraints
alone.

In this section we shall present several algorithms, which
collectively provide a means of computing conformational
ensembles consistent with distance geometry descriptions. The
overall procedure is often referred to as ‘the EMBED algo-
rithm’, although that term, strictly speaking, applies only to
the coordinate generation process in step (2) below. The pro-
cedure, in any case, consists of the following three, broadly
defined, steps:

(1) Extrapolating a complete set of lower and upper limits
on all the distances from the sparse set of lower and
upper bounds that are usually available, a process known
as bound smoothing.

(2) Choosing a random distance matrix from within these
limits, and computing coordinates that are a certain best-
fit to the distances, in a process itself called embedding.

(3) Optimizing these coordinates versus an ‘error’ function
which measures the total violation of the distance and
chirality constraints, usually by some form of simulated
annealing.

3.1 Bound Smoothing

The three-dimensional distance limits are the minimum and
maximum value that each distance can assume in any three-
dimensional structure all the distances of which lie between
their given lower and upper bounds. The computation of
these distance limits is a difficult and unsolved problem,
but loose approximations are available. By ‘loose’, we mean
that each approximate upper limit is at least as large as
the true upper limit, while each approximate lower limit is
no larger than the true lower limit. The most important of
these approximate limits are called the triangle inequality
limits. The reason they are the most important is that they
can be computed rapidly and reliably, even for very large

problems. Unfortunately, the triangle inequality limits are
often very poor approximations to the true three-dimensional
limits, particularly with regard to the lower limits. By using
the tetrangle inequality obtained from the nonnegativity of
the symmetric four-point Cayley Menger determinants, it is
sometimes possible to obtain substantially ‘tighter’ limits. The
computational expense of doing so, however, rapidly becomes
prohibitive past 100 to 200 atoms. The process of calculating
such distance limits is generally known as bound smoothing. It
is the most important, and least well-solved, step of the overall
procedure.

3.1.1 The Triangle Inequality Limits

The triangle inequality limits are the minimum and maxi-
mum values that the distances can assume in any metric space
consistent with the bounds. A metric space, for our purposes,
is simply a distance matrix whose distances satisfy the triangle
inequality. The limits are attained in certain extremal metric
spaces, with characteristic patterns of distances equal to their
bounds. The patterns that can occur in a three-point metric
space are shown in Figure 1. In addition to providing some
finite range of values for every distance in a molecule, triangle
inequality bound smoothing can locate certain contradictions
in the bounds, called triangle inequality violations.

In order to compute the triangle inequality limits efficiently,
we reduce their calculation to an all pairs shortest paths
problem in a certain digraph (i.e., a collection of ‘nodes’
connected by ‘arcs’ with an arrow at one or both ends). A
‘path’ in such a digraph is a sequence of nodes such that any
two consecutive nodes in the sequence are connected by an arc
in the digraph, whose arrow points from the first to the second;
the ‘length’ of the path is the sum of the lengths assigned to
its arcs. It is easily seen that the upper triangle limits are equal
to the lengths of the shortest paths in an undirected digraph
(i.e., one whose arcs are all two-headed), whose arc lengths
are equal to the given upper bounds. It is a little more difficult
to show that all the lower triangle limits are of the form

�ij D �km � uik � ujm �39�

where i, j, k, m are not necessarily distinct atom indices,
�ij, uij respectively denote lower and upper bounds on the
corresponding indexed atoms, and overbars indicate the corre-
sponding triangle inequality limits.11 This shows, first of all,
that the upper limits can be computed independently of the
lower, and secondly, that the greatest lower limit cannot exceed
the greatest lower bound. It also shows that the negatives of
the lower limits are the lengths of shortest paths in a cer-
tain digraph which is guaranteed to have at most one negative
lower bound in each path.

Figure 1 The upper (top) and lower (bottom) triangle inequality
limits. The heavy solid line denotes the distance at its lower bound,
while a light solid line denotes the distance at its upper bound; the
dashed line denotes the associated limit
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Figure 2 The digraph whose shortest paths determine the triangle
inequality limits. The two-headed arrows in the left and right halves
have length equal to the upper bound between the corresponding pair
of atoms, while the one-headed arcs going from left to right have
length equal to the negative of the lower bound. Note that not all
possible arcs are present

This digraph consists of two sets of nodes, where each set
contains one node for every atom in the system. Within each
set, the two-headed arcs connecting pairs of nodes have length
equal to the upper bounds between the corresponding pairs of
atoms, while between the two node sets, the one-way arcs have
length equal to the negatives of the lower bounds between
the corresponding pairs of atoms. Figure 2 illustrates such a
digraph. The fact that all the negative arcs go in one direction
between the two node sets ensures that this digraph contains
no negative cycles, which would lead to shortest paths with
a length of negative infinity! The shortest paths within each
node set are clearly the triangle inequality upper limits, while
those between the two node sets are the negatives of the lower
limits (if less than zero). Moreover, if a triangle inequality
violation �ij > uij is found, the erroneous constraints must lie
on the shortest paths that determine these limits.

Perhaps the simplest shortest paths algorithm is Floyd’s
algorithm. This algorithm takes each node k of the digraph in
turn, and then makes a pass through all ordered pairs of other
nodes �i, j�. If the length of the path i ! k ! j is shorter
than the length of the direct path i ! j, the latter is set to the
former. This ensures that after each pass all the path lengths are
at least as short as any path that goes through the node k, and
hence iterating on this procedure for k D 1, . . . , N produces
the desired matrix of shortest paths. The following pseudocode
implements this procedure for a digraph of the form described
above.

procedure Floyd( Natom,Lower,Upper )
for k from 1 to Natom do

for i from 1 to Natom� 1 do
for j from iC 1 to Natom do

comment: Path lengths in left-hand network.
if Upper[i,j] > Upper[i,k]C Upper[k,j] then

Upper[i,j] :=Upper[i,k] C Upper[k,j];
comment: Path lengths from left to right-hand network.

if Lower[i,j] < Lower[i,k]� Upper[k,j] then
Lower[i,j] :=Lower[i,k] � Upper[k,j];

else
if Lower[i,j] < Lower[j,k]� Upper[k,i] then

Lower[i,j] :=Lower[j,k] � Upper[k,i];
comment: Check for triangle inequality violations.

if Lower[i,j] > Upper[i,j] then
exit( ‘‘bad bounds’’ );

endfor endfor endfor
endproc

Clearly, this algorithm requires time proportional to the
cube of the number of atoms in every case. This algorithm
is simple and general, but does not take advantage of the fact
that the bounds are generally very sparse, meaning that no
explicit lower and upper bounds are available for most pairs
of atoms. A much faster algorithm takes advantage of sparsity
by constructing a shortest paths tree, one from each node on the
‘left’ side of the network in turn, which contains only those
arcs whose lengths are equal to the available bounds. Such
shortest path algorithms were first applied to triangle inequality
bound smoothing in the DISGEO program,12 but ignored the
hard-sphere lower bounds to do so. These lower bounds are
an obvious exception to the sparsity of the constraints, but
because they are very small they are seldom involved in any
other lower triangle limits. Nevertheless, it has recently been
found that by simply sorting the atoms by radii, and ceasing to
look at the implicit arcs whose lengths are the negative sum of
the corresponding radii once that sum falls below the current
path length, one can also handle large numbers of small hard-
sphere lower bounds with no significant increase in running
time.

3.1.2 The Tetrangle Inequality Limits

The tetrangle inequality is a consequence of the nonnegativ-
ity of the symmetric four-point Cayley Menger determinants.
These do not factorize like the three-point determinants, but
they can be expanded as a quadratic function of one of the
squared distances, e.g., D(3,4), as follows:

D�1, 2, 3, 4� D D�1, 2, 3, 4�jD�3,4�D0 �D2�3, 4�D�1, 2�/4

CD�3, 4�D�1, 2, 3; 1, 2, 4�jD�3,4�D0 �40�

Here, the notation

D�1, 2, 3, 4�jD�3,4�D0 �41�

means that the determinant is evaluated with the one squared
distance D�3, 4� replaced by zero, and similarly for D�1, 2, 3;
1, 2, 4�. The discriminant of this quadratic is

D�1, 2, 3�D�1, 2, 4�, �42�

and hence nonnegative whenever all the triangle inequalities
not involving D�3, 4� are satisfied. Since the leading coefficient
is negative, the four-point Cayley Menger determinant is
nonnegative for all values of D�3, 4� in a closed interval
between the nonnegative roots of this quadratic. These roots
are called the lower and upper tetrangle inequality limits on
D�3, 4�. In the case of a chain of four covalently bonded atoms
3 1 2 4, they correspond to the cis/trans limits.

Like the triangle inequality limits, all possible tetrangle
inequality limits on any one distance among each four points,
given bounds on the remaining five distances, can be explicitly
enumerated. Up to reindexing, there are two possible combi-
nations of bounds for the lower limits, and two for the upper
limits; these are shown in Figure 3. Unfortunately, there is
no equivalent shortest paths characterization for the tetrangle
inequality limits. This forces us to use a comparatively brute
force approach, in which we initially set the lower and upper
limits to the bounds (or zero and infinity where no bounds
are available), and iteratively scan all quadruples replacing
the current limits by the triangle and tetrangle limits on one
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Figure 3 The upper (left) and lower (right) tetrangle inequality
limits. A heavy solid line denotes the distance at its lower bound,
while a light solid line denotes the distance at its upper bound; a
dashed line denotes the associated limit

distance in the quadruple (if tighter) until no further changes
occur. This procedure can be summarized as follows:

procedure Easthope( Natom,Lower,Upper )
for i from 1 to Natom do for j from i C 1 to Natom do
for k from 1 to Natom do for m from kC 1 to Natom do

comment: See if k and m can be made collinear with i or j.
if not Collinear( i,k,m,Lower,Upper )
and not Collinear( j,k,m,Lower,Upper ) then

comment: Tighten k,m upper limit by tetrangle limit.
test :D UpTetLim( i,j,k,m,Lower,Upper );
if test < Upper[k,m] then Upper[k,m] :D test;

comment: Tighten k,m lower limit by tetrangle limit.
test :D LoTetLim( i,j,k,m,Lower,Upper );
if test > Lower[k,m] then Lower[k,m] :D test;

endif
comment: Check for tetrangle inequality violations.

if Lower[k,m] > Upper[k,m] then
exit( ‘‘bad bounds’’ );

endfor endfor endfor endfor
comment: Test for convergence.
if any changes were made to the limits then
return TRUE else return FALSE;

endproc

The subprocedure Collinear checks if the corresponding
triple of atoms can be made collinear, given the current limits
among the atoms; if so, it updates the current limits by the
corresponding triangle inequality limits and exits FALSE. The
subprocedures LoTetLim and UpTetLim, which are valid
only if these triples cannot be made collinear, return the
tightest tetrangle inequality limits enumerated as above. This
procedure (named after the programmer who first implemented
it13) is called iteratively until no further changes occur, as
indicated by its return status.

Each call to Easthope requires time proportional to the
fourth power of the number of atoms, and hence tetrangle
inequality bound smoothing is too time consuming to be used
for more than 100 to 200 atoms. In addition, large improve-
ments in the limits are generally obtained only in subsets of
atoms wherein the bounds force the atoms to be approximately
coplanar. Since such subsets do not account for the major-
ity of atoms in most molecules, tetrangle inequality bound
smoothing is of limited practical importance. The next logical

step in the progression would be to use pentangle inequal-
ity bound smoothing, but while we would expect significant
improvements from such a procedure, it would be even more
computationally intensive.

Some indication of the difficulty of developing efficient
procedures for computing higher-order limits may be obtained
from the following considerations. The tetrangle limits are
properly defined as the minimum and maximum values that
the distances can assume in any metric space consistent with
both the bounds and the tetrangle inequality. A procedure that
iterates over all quadruples tightening the limits according
to the triangle and tetrangle inequalities (as above) will not,
however, find these limits generally. A set of lower and upper
bounds among five points, known as the Cauchy pentagon
(Figure 4), constitutes a counterexample.1

3.2 The EMBED Algorithm

The next step in the overall calculation of coordinates is
to choose a random distance matrix from within the distance
limits, and fit a set of coordinates to it. By using a differ-
ent random number seed in multiple passes through this step,
one obtains an ensemble of different conformations. Early
applications of this procedure to conformational calculations
simply chose uniformly distributed, independent random num-
bers from within the limits, in order to obtain the random
distance matrix. This had the effect of producing structures
that were relatively expanded, and also seemed rather more
similar to one another than they should be, especially when
the limits were very ‘loose’. This in turn led to concerns
that the overall procedure might not be sampling conformation
space adequately. Subsequently it was found that the degree
of expansion could be controlled at will by biasing the dis-
tances towards larger or smaller values, and a procedure called
metrization was developed which greatly improved the sam-
pling, by forcing the random distances to satisfy the triangle
inequality as well as the given limits.15 The actual process
of fitting coordinates to the distances, called embedding, has
proven remarkably robust, and although a number of variations
have been developed,16,17 it seems safe to say that it has not
been greatly improved since it was first introduced.18

Figure 4 The Cauchy pentagon is a tensegrity framework,14 whose
‘struts’ (heavy lines) constitute lower bounds, and whose ‘cables’ are
upper bounds, on the associated distances. The upper limit on any
one pair of nodes separated by a strut, or the lower limit on any
one pair connected by a cable, are tetrangle inequality limits implied
by the bounds that correspond to the remaining struts and cables.
Such five-point tetrangle inequality limits would not be found by an
algorithm that only iterates over all quadruples of atoms as above



DISTANCE GEOMETRY: THEORY, ALGORITHMS, AND CHEMICAL APPLICATIONS 9

3.2.1 Metrization

Metrization is based on the following facts:

(1) The triangle inequality limits are the minimum and max-
imum values that the distances can assume in any metric
space consistent with the triangle inequality limits them-
selves.

(2) The set of all metric spaces satisfying the distance limits,
being the intersection of the ‘box’ defined by the limits
and the convex cone defined by the triangle inequalities,
is itself a convex set. Thus every value of every distance
between its lower and upper limits is attained in some
metric space consistent with all the limits.

The procedure is now almost obvious. First, one takes one
of the distances and sets it to some random number between its
lower and upper limits. One then sets its lower and upper limits
to this number, and recomputes the triangle inequality limits
using these modified limits as the input bounds. Repeating this
procedure for each and every distance in turn eventually yields
a set of lower and upper triangle inequality limits that are equal
to each other, and also lie within the original limits. These
limits therefore are also equal to the desired matrix of distances
satisfying both the triangle inequality and the original limits.

This procedure, though straightforward, would require time
proportional to the fifth power of the number of atoms.
Fortunately, if one has computed a shortest paths tree from
a root node (utilizing, in this case, all the distance limits, and
not just those given by the relatively sparse set of distance
bounds), it is possible to update the limits after tightening
one limit between the root of the tree and any other node in
time that is only linear in the number of nodes. This reduces
the total time required for metrization to only the cube of
the number of atoms. It has the disadvantage, nonetheless, of
restricting the order in which one chooses the distances to
all those involving one atom, and then all the rest involving
some other atom, etc. This propsective form of metrization fills
up the above-diagonal half of a distance matrix by row. An
alternative, called retrospective metrization, fills up the above-
diagonal half by column, with quite similar overall results.
If we use negative indices for nodes in the ‘right’ half of
the digraph introduced in Section 3.1 above, the following
pseudocode illustrates the prospective case:

procedure Metrize( Natom,Lower,Upper )
for r from 1 to Natom-1 do

comment: Make shortest paths tree using current limits.
tree :=MakeTree( r,Lower,Upper );
for s from rC 1 to Natom do

lub :=tree.path length[s];
glb :=�tree.path length[�s];

comment: Choose random number between current limits.
distance :=Random( glb,lub );

comment: Set the limits to it, and update the tree by it.
Lower[r,s] :=Upper[r,s] :=distance;
tree :=UpdateTree( s,distance,tree );

endfor
endfor

endproc

The subprocedure MakeTree computes a shortest paths
tree using the given root r and the given Lower, Upper
limits, while UpdateTree updates the tree on setting the
limits between the root and each other node s to the given
distance; Random just returns a random number between its
arguments.

Because the triangle inequality is a great deal more effective
at reducing upper limits than it is at raising lower limits, the
above restriction on the order causes those atoms that serve
as the root of the tree early in the procedure to come out
much closer together than those chosen later. By randomizing
the order in which the atoms serve as tree roots, one can
nevertheless avoid any net bias in the final set of structures.
The cubic dependence of the time required for metrization on
the number of atoms means that for very large systems (above
ca. 1000 atoms) metrization can take a significant fraction
of the overall time required to compute a conformational
ensemble. It has, however, been observed that much of the
gain can be obtained by using the procedure to choose only
the distances between a few of the atoms and all others, and
then filling in the rest of the distance matrix with independent
random numbers between the resulting limits.19

Another interesting parameter to vary is the distribution
with which the distances are chosen from within their limits
during the process. In many cases, particularly when dealing
with chain molecules and distance bounds consisting primarily
of interatomic contacts (as in protein structure determination
from NMR data), the distances in the resulting structures are
strongly correlated with the triangle inequality upper limits.
In such cases a bias towards the upper limits significantly
improves the quality of the embedded coordinates, albeit at
the expense of reduced sampling. This bias can be introduced
by generating the distances with an exponential distribution,
whose mean value is obtained from the lower and upper limits
via the formula

d D ��1 � ˇ�� ˛ C ˇu ˛�1/˛ �43�

in which one typically sets ˇ D 1/2 and ˛ D 4. As a general
rule, one has to find a compromise between the quality of the
individual coordinate sets and the sampling as a whole.

3.2.2 Embedding

The key to the EMBED algorithm lies in the fact that
coordinates that are a certain best-fit to the estimated distances
obtained via metrization can be found rapidly and reliably
by eigenvalue methods, with no problems at all from local
minima. The most obvious way to fit coordinates to distances
is to minimize either the so-called STRESS

N,N∑
1Di<j

�wij�jjxi � xjjj � dij��2 �44�

or else the smoother SSTRESS

N,N∑
1Di<j

�wij�jjxi � xjjj2 �Dij��2 �45�

with respect to the coordinates x1, . . . , xN, where Dij D d2
ij are

the estimated squared distances and the wij ½ 0 are weights.
Although some nice characterizations of the stationary points
of these functions are known,17,20 no fast or reliable algorithm
for finding their global minima is available.

If we expand the SSTRESS as

4
N,N∑

1Di<j
w2
ij��xi ž xj�� 1

2
�x2
i C x2

j � Dij��2 �46�
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we see that it can be regarded as a weighted sum of squares
of the differences between the inner products calculated from
the coordinates and an estimate thereof, namely

1
2 �x

2
i C x2

j �Dij� �47�

In order to obtain an estimate that is independent of the
coordinates we are trying to calculate, we use the following
formula to calculate the squared distances to the center of mass
from the squared distances among the points, i.e.,

D0i D M�1
N∑
jD1

mjDij �M�2
N,N∑

1Dj<k
mjmkDjk �48�

where the mj are the masses of the points, and M D ∑
j mj.

It is easily shown that when the estimated distances among
the points are exact, then so are the distances to the center of
mass, i.e., for center of mass coordinates,

Dij D �xi � xj�2 ) D0i D x2
i for all i, j �49�

Because it involves an averaging process, the above equation
for the squared distances to the center of mass D0i has
the important feature of being very tolerant to errors in the
estimated squared distances Dij.

We now restrict ourselves to weights of the form wiwj, and
consider the problem of minimizing the so-called STRAIN

1

2

N,N∑
i,jD1

�wiwj�xi ž xj � aij��2 �50�

where aij D 1
2 �D0i C D0j � Dij�. If we let A D [aij] and

W D diag�w1, . . . , wN� be a diagonal matrix of weights, the
STRAIN can be expressed as a squared Frobenius norm, i.e.,

F�X� D 1
2 jjW�XXT � A�Wjj2 �51�

where X D [x1, . . . , xN]T is an Nð 3 matrix of coordinates.
It can be shown that the matrix A is related to D D [Dij] by
a two-sided projection, namely

A D � 1
2 �I � 1mT/M�D�I � m1T/M� �52�

where 1 D [1, . . . , 1]T,m D [m1, . . . , mN]T, and I is the iden-
tity matrix; the matrix AX D XXT is similarly related to DX D
[�xi � xj�2]. Thus the STRAIN can be written as

F�X� D 1
2 jjP�DX � D�PTjj2 �53�

where P D W�I � 1mT/M�/
p

2. In this sense it represents a
direct fit to the (squared) distances.21,22

If we change variables to Y D WX and let B D WAW, the
STRAIN can also be written as

F�Y� D 1
2 jjYYT � Bjj2 �54�

The gradient of the STRAIN, of course, must vanish at its
global minimum. If we arrange this gradient in matrix form,
we obtain

[∂F/∂yij] D �YYT � B�Y D 0 �55�

or

BY D Y�YTY� �56�

where YTY is a 3 ð 3 matrix that we will call the inertial
tensor. Without loss of generality, we can assume that the
coordinates are rotated in space so that the inertial tensor is
diagonal, i.e.,

YTY D diag�(1, (2, (3� �57�

Then if Yi is the ith column of the scaled coordinate matrix
Y, we have BYi D (iYi for i D 1, . . . , 3. It follows that these
columns are proportional to eigenvectors of the scaled esti-
mated Gram matrix B, while the moments of inertia (1, (2, (3
are the corresponding eigenvalues. Since the eigenvectors have
unit norm, the diagonal form of the inertial tensor implies that
the constant of proportionality is

p
(i.

We now expand the squared Frobenius norm as follows:

F�Y� D tr��YYT � B�2�

D tr�B2 � 2YYTB C YYT�2� �58�

D tr�B�2 � tr�2YTBY � �YTY�2�

The foregoing considerations imply that at any stationary point
of the STRAIN, we have

YTBY D �YTY�2 D �diag�(1, (2, (3��
2 �59�

and hence

F�Y� D tr�B2�� (2
1 � (2

2 � (2
3 �60�

It follows at once that among all stationary points, the global
minimum of the STRAIN is characterized by the three eigen-
values of the matrix B of largest magnitude. Of course, we
have assumed that our inner product is positive-definite, which
holds only if these eigenvalues are nonnegative. Therefore, the
global minimum Y subject to this condition is obtained by tak-
ing the three largest nonnegative eigenvalues of B, and scaling
the corresponding eigenvectors by their squareroots. These are
then scaled back to the original coordinates X D W�1Y.

It is important to note that a variety of iterative methods
exist by which the three largest eigenvalues of a symmetric
matrix can be rapidly found without fully diagonalizing it.
The simplest, called the power method, consists of little more
than taking a random unit vector, then iteratively multiplying
it by the matrix and renormalizing until convergence. The
eigenspace is then subtracted from the matrix and the process
repeated to get the next largest eigenvalue/vector. Providing
that the three largest eigenvalues differ from one another by
some fixed percentage (in practice, a few percent is sufficient),
this procedure requires time proportional to only the square
of the number of atoms (i.e., the size of the Gram matrix).
This assumption seems to hold quite well in most chemical
applications, and even if nearly degenerate eigenvalues are
encountered, the solution that is obtained on terminating prior
to convergence is still quite good. In the case of perfectly
degenerate eigenvalues, the procedure just converges to an
arbitrary eigenvector within the degenerate eigenspace, and
the optimum is still obtained. For these reasons we have never
bothered to implement eigenvalue procedures with higher-
order convergence, especially since each iteration of these
more complex procedures generally requires time proportional
the cube of the number of atoms. As it stands, embedding
requires only a very small fraction of the time needed for
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coordinate refinement, so there is little point in trying to make
it faster.

3.3 Coordinate Refinement

The coordinates obtained from metrization and embedding,
although they fit the distance constraints well in the root-
mean-square sense, will generally have significant constraint
violations in them. This is particularly noticeable for the cova-
lent constraints such as bond lengths, where a violation of
anångstöm has disastrous energetic consequences. In addition,
the chirality constraints are completely ignored during embed-
ding, and while the overall handedness can be corrected by
a simple reflection operation, the relative handedness of vari-
ous parts of the system are generally also not consistent with
the chirality constrants. Correction of these violations is done
by minimizing an error function, which measures the total
violation of both the distance and chirality constraints. Even
though these functions generally have numerous local minima,
the coordinates obtained by embedding are good enough to
enable solutions to be found with simple descent-based min-
imization algorithms even on problems with as many as a
hundred atoms. In larger problems such as proteins, it is still
necessary to resort to global minimization procedures like sim-
ulated annealing, but even in these cases the ready availability
of the good starting structures produced by embedding makes
the job much easier. In this section we shall first describe
the usual error functions used in distance geometry calcula-
tions, and subsequently some of the more common methods
of minimizing them.

3.3.1 Error Functions

An error function23 is a real-valued function of the atomic
coordinates that is:

(1) nonnegative;
(2) translation and rotation independent;
(3) everywhere at least twice differentiable;
(4) zero if and only if all of the geometric constraints are

fully satisfied.

The following is the error function favored by this author for
the distance constraints:

Ed�X� D
∑
fi,jg

max2

(
0,
�xi � xj�2 � u2

ij

ε2
u C u2

ij

)

C
∑
fi,jg

max2

(
0,
l2ij � �xi � xj�2

ε2
l C �xi � xj�2

)
�61�

The symbol fi, jg indicates that the sums are only over those
pairs of atoms for which explicit distance constraints exist.
Since in most problems the distance constraints are very
sparse, such an error function can be computed much more
rapidly than semi-empirical energy functions. The parameters
εl, εu are made large enough to avoid having any single term
become much bigger than the others when the distance or
upper bound is very small, respectively. Each term in this
error function is called a distance restraint.

The exception to constraint sparsity is of course the hard-
sphere lower bounds, which apply to most pairs of atoms.
Because the sphere radii tend to be small compared to the

overall dimensions of the system, however, a list of all pairs
of atoms that are close enough together to collide can be
constructed quite rapidly. There exist a number of methods
for doing this, but the simplest is a standard method for range
query checking known as the plane sweep method. This may
be summarized as follows:

procedure Sweep( Natom,Radius,Coord )
for i from 1 to N do

comment: Store the endpoints & indices of their intervals.
Term[2 Ł i].value :=Coord[i,1]� Radius[i];
Term[2 Ł iC 1].value :=Coord[i,1]C Radius[i];
Term[2 Ł i].index :=Term[2 Ł i C 1].index :=i;

endfor
comment: Sort the list of endpoints by their values.

SortByValue( Term );
comment: Scan the list of endpoints recording hits.

for i from 1 to 2*N do
if not OnList( Term[i].index ) then

EnList( Term[i].index );
else

DeList( Term[i].index );
comment: All intervals now on the list overlap the i-th.

while NextIn( other index ) do
NewHit( Term[i].index,other index );

endif
endfor

endproc

The first loop records the left and right termini of the
intervals obtained by projecting the spheres onto the first
coordinate axis. This array of termini is then sorted by value,
and scanned from left to right. Each time the left terminus of an
interval is encountered, its index is stored on a list. Each time
the right terminus is encountered, the index is removed from
the list, and the list scanned. Every interval with an index on
the list then overlaps with the delisted interval, and is recorded
as a hit. In actual practice, pairs are only considered hits when
the intervals obtained by projecting the spheres onto the second
and third axes also overlap, so that each hit corresponds to the
intersection of a pair of cubes parallel the coordinate axes,
whose side lengths are twice the radii of the corresponding
spheres. Only these pairs must subsequently be checked for
hard-sphere overlaps. By using radii that are, e.g., 1 Å larger
than the true radii, one can avoid having to rebuild the list
until at least one atom has moved by that amount, albeit at the
expense of having to check a slightly larger number of hits
each time. The exact amount of extra radius that optimizes
the overall speed depends on several factors, and is usually
determined empirically.

We next turn our attention to the chirality error function.
This is generally defined using the signed volumes, as follows:

Ec�X D
∑

fi,j,k,mg
max2�0, vol[xi, xj, xk, xm] � uijkm�

C
∑

fi,j,k,mg
max2�0, lijkm � vol[xi, xj, xk, xm]� �62�

Here, the function vol[xi, xj, xk, xm] D �xj � xi� ž ��xk � xi�ð
�xm � xi�� is the signed volume, while lijkm and uijkm are lower
and upper bounds on it. Since the chirality constraints by def-
inition specify only the sign of the volume, these lower and
upper bounds are derived from the distance constraints among
the quadruple of atoms, by minimizing and maximizing the
corresponding four-point Cayley Menger determinant subject
to those constraints. The absolute volume so obtained is given
the sign of the chirality, if the chirality is nonzero. A chiral-
ity of zero, on the other hand, denotes a planarity constraint,
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in which case the minimum absolute volume consistent with
the distance constraints should also be zero, and the upper
and lower bounds on the volume are the maximum volume
allowed by the distance constraints and its negative, respec-
tively. Bounds on the signed volumes can also be derived
from ranges in the values of the torsion angles about rotat-
able bonds, and used to constrain these angles. In this case the
torsion angles between all pairs of substituents, one on either
end of the bond, should be constrained in order to obtain the
desired range of rotomeric states in all cases.

3.3.2 Optimization Procedures

Despite a superficial resemblence to semi-empirical energy
functions, it is much easier to locate a global minimum of
the error functions used in distance geometry than it is to
locate global energy minima. There are several reasons for
this, of which the above-mentioned speed with which error
functions and their gradients can be calculated is probably the
least important. Unlike energy, where the primary criterion
is to model the physics as accurately as possible, one has a
great deal of lattitude in ones choice of error function, and
we have utilized this lattitude so as to make it as smooth
and well-behaved as possible. Thus the individual terms of
the above distance error function contain no inflection points
(as functions of the distances), and the intrinsic weighting of
the terms tends to equalize their contributions. In particular,
the terms due to the lower bound violations are bounded, and
do not become infinite as the distance goes to zero. The force
due to the upper bound violations, on the other hand, increases
steadily as the violations increase, so that the gradient tends
to point in the general direction of the global minimum even
when one is far away from it. Last but not least, the value of
the global minimum is known to be zero (assuming that the
constraints are mutually consistent), so that one can at least
tell when one has reached it!

The earliest applications of distance geometry to che-
mical problems used the conjugate gradients minimization
algorithm.23 This is a very robust and general-purpose min-
imization algorithm, which requires only first derivatives of
the error, and is still probably the method of choice for solv-
ing small problems. Even though it is difficult to attain true
quadratic convergence with the conjugate gradients method,
it has been found to perform well even when far from a
minimum. Higher-order methods relying on second deriva-
tive information have not been used as extensively, primarily
because the starting coordinates obtained from embedding are
usually sufficiently far away from the minimum that quadratic
convergence does not set in for a very long time, during
which one has the additional overhead of calculating sec-
ond derivatives and solving Newton’s equations. Among the
numerous variations on the conjugate gradients algorithm that
we have tried, the best performance appears to be obtained
from Shanno’s version.24

In computational chemistry generally, minimization algo-
rithms like conjugate gradients tend to perform best when the
torsion angles about single bonds are used as the variables,
instead of the Cartesian coordinates of the individual atoms, for
the simple reason that the number of torsion angles generally
runs about one tenth the number of Cartesian coordinates. The
variable target function method uses the conjugate gradients

algorithm with torsion angles to solve distance geometry prob-
lems, starting from random conformations.25,26 This method
was designed for the specific problem of fitting polypeptide
chains to the distance and torsion angle constraints that are
available from NMR spectroscopy (see below). It operates by
first minimizing with respect to the ‘short-range’ constraints
connecting atoms separated by at most one amino acid residue,
and gradually adding on longer and longer-range constraints
until all the distance constraints are included.

When it works, the variable target function method is quite
fast, but how well it works depends strongly on the way the
constraints are distributed along the chain. For example, much
better results are obtained with proteins that are primarily
alpha helical than with proteins that contain large amounts of
beta sheet. The method also does not extend readily to other
kinds of molecules, particularly those containing complicated
flexible ring structures. Unfortunately, the EMBED algorithm
cannot be used to get good initial torsion angles from which
to start the optimization, because the distorted covalent geo-
metry in the embedded structures renders the torsion angles
in them meaningless. The lack of a fast and general method
of finding good initial torsion angles, together with the prob-
lems of handling ring molecules, has limited the scope of the
applications of torsion angle based algorithms to distance geo-
metry. Recent programs for performing dynamical simulated
annealing (below) using torsion angles should nevertheless sig-
nificantly improve this situation.27,28

Presently, the most reliable method of fitting coordinates
to distance and chirality constraints is dynamical simulated
annealing.29 31 In this method one performs a molecular
dynamics simulation in which one treats the error function
as if it were the energy, and gradually cools the system down,
starting from a high temperature. This tends to drop one into
a good, in fact often global, minimum of the error. Because
one does not need to be physically realistic, one can make
all the atomic masses equal, and use the largest time step
consistent with numerical stability. This, together with the
above-mentioned smoothness of the error function, enables
one rapidly to make very large changes to the coordinates.
The amount by which the individual atoms move on each time
step, in fact, can exceed 1 Å.

With appropriate parameters and a sufficiently long cool-
ing period, the convergence obtained by this procedure can
approach 100%.32 It is even possible to obtain good conver-
gence starting from random coordinates for large molecules
such as proteins.33 The amount of time required to obtain a
given convergence ratio, however, is substantially less when
the starting coordinates are obtained from the EMBED algo-
rithm. In addition, there is always a compromise between the
failure rate and the amount of time spent annealing each struc-
ture. Generally speaking, the overall time required to obtain
a given number of converged conformations is minimized at
about an 80% convergence ratio.

One interesting trick, which significantly improves the con-
vergence ratio obtained for a given computational investment
with both conjugate gradients as well as simulated annealing,
involves using four-dimensional coordinates. Minimization in
higher dimensions was first pioneered by G. M. Crippen, using
simple potential functions on reduced polypeptide models.34

Subsequently, several groups found that by embedding four-
dimensional coordinates and adding a dimensionality error,
given by the sum of the squares of the fourth coordinates, to
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the error function, one could avoid being trapped in certain
kinds of local minima.30 32 Of course, the final structures that
converge to zero error are assured of being three-dimensional,
by virtue of the added dimensionality error.

A more recent variation on this procedure developed by
the author, known as the WARP procedure, uses conjugate
gradients to minimize the three-dimensional conformation
obtained by projecting a fixed four (or higher)-dimensional
structure into three dimensions, where the entries of the 4 ð 3
matrix which maps the four-dimensional structure into three
dimensions are the variables for the minimization. Using four-
dimensions, one obtains only about a factor of two improve-
ment in the error, but the coordinate change can be quite large.
As one extends this procedure to higher dimensions, one uses
more variables, reaching all 3N� 3 internal and rotational
degrees of freedom at N� 1 dimensions. Thus this procedure
gives us a systematic way of defining a nested sequence of
subspaces of the internal configuration space, in a fashion
reminscent of normal modes. It remains to be seen if this
may have wider applicability in, e.g., energy minimization
problems.

4 APPLICATIONS

The utility of distance geometry depends on discovering
innovative ways of formulating conformational problems in
terms of distance and chirality constraints. In this section we
describe several chemical applications and their associated
problem formulations, which demonstrate that the distance
geometry approach is surprisingly general even though it
relies upon simple ‘black-and-white’ constraints rather than
‘grey-scale’ probabilities derived from, e.g., a semi-empirical
energy function. This generality is one of distance geometry’s
most important assets: once one has mastered this one tool,
one is ready to solve a wide variety of problems. It is also
worth noting that the ‘black-and-white’ model enables one to
answer some questions that would be difficult or impossible to
answer with a probablistic model. The reason is that given just
about any set of consistent distance constraints, the distance
geometry algorithms described above are reliable enough to
enable one to find a conformation that satisfies them all.
Thus if one is unable to find such a conformation, one
can be reasonably confident that ones geometric assumptions
(constraints) are incorrect, and providing there are not too
many errors in the constraints, one will generally also be
able to figure out what is wrong. In energy minimization, by
contrast, it is often difficult just to tell if something is wrong
(e.g., one is trapped in a local minimum, the energy function
parameters do not extend to the molecule of interest, etc.).
Distance geometry is much more than molecular modeling
with a simplified energy function!

4.1 Conformational Analysis

It is, of course, straightforward to describe the covalent
structure in terms of distance and chirality constraints. The
bond lengths are all constrained to their standard values, while
the bond angles can be fixed by constraining the corresponding
geminal distances. The vicinal distances across rotatable bonds
are usually set to their cis/trans limits, to enable free rotation,
and all the distances within any known rigid group of atoms

(e.g., phenyl rings) are constrained to their known values.
Hard sphere lower bounds are imposed on all other distances,
where the sphere radii are generally chosen about 10% below
the van der Waals radii (or determined empirically from
crystal packing studies). Finally, chirality constraints should
be imposed on every rigid quadruple of atoms in the molecule,
even if it is not chiral in the usual chemical sense, in order
to enforce rigidity of these groups during optimization. This
is particularly important for planar groups of atoms, since to
a first-order approximation the distances are independent of
out-of-plane distortions.

4.1.1 General Methods

All of these constraints are readily generated from cova-
lent connectivity tables and a geometric database. Thus one
obvious application of distance geometry is as a means of
constructing three-dimensional molecular models from con-
nectivity data, either entered interactively from a graphical
monitor, or else contained in a database of chemical com-
pounds. Programs that use distance geometry to accomplish
these tasks are commercially available, and in widespread use.
The RUBICON program from Daylight Chemical Information
Systems is of particular interest, because it contains a user
extensible language for generating constraints from substruc-
tures. The further development and standardization of such
languages promises to broaden substantially the scope of the
applications of distance geometry.

One advantage of the distance geometry approach to model
building is that the conformers are assured of having no bro-
ken rings or long-range van der Waals clashes between atoms.
Another advantage is that, when the molecule is flexible, one
can easily generate a large number of random conformers,
rather than just one, simply by using a different random num-
ber seed during metrization for each calculation. The random
nature of the sampling sometimes leads to the discovery of
surprising conformational possibilities. Moreover, in combi-
nation with conformational metrics such as the RMSD and
simple clustering algorithms, one can select a small but diverse
set of conformers spanning all of conformation space from
such a conformational ensemble. The earliest example of this
approach was a conformational analysis of cycloalkane, crown
ether, and steroid rings.35 Other examples, including several
cyclic oligopeptides, may be found in a recent review.36

By imposing additional constraints, it is often possible
to direct the search to particularly interesting regions of the
conformation space. For example, if one believes that a cer-
tain hydrogen bond is important, it is easy to constrain the
donor acceptor pair to be together in all members of the
ensemble. One can even systematically enumerate all possibili-
ties according to some preconceived classification scheme. The
most interesting case here is probably to systematically impose
ranges on the torsion angles that cover all possible rotomeric
states of the molecule, and see which ones can be built with the
desired properties. Unlike torsion angle grid searches, this pro-
cedure involves only one calculation per rotomer, and so may
be useful in cases where grid searches could only be performed
with a grid too coarse to catch all sterically allowed confor-
mations. Another classification scheme, involving interatomic
contacts, has been used to search for the global minimum of
a square-well energy function,37 in a fashion similar to more
recent protein threading algorithms.38
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4.1.2 Special Cases

One nice feature of distance geometry is that, in special
cases, it is possible describe the entire conformation space,
either by enumeration if it is discrete, or by finding an
explicit parametrization if it is continuous. The first, and
perhaps still most elegant, such analysis was carried out on
cyclohexane by Andreas Dress. By expanding the five- and six-
point Cayley Menger determinants as functions of the three
variable vicinal distances, he was able to prove rigorously that
the conformation space of this molecule consists of a rigid
chair form as well as a flexible ‘circle’ of conformers related
to the boat form by pseudo-rotation. This work was never
published, but an account may be found in Ref. 1. To date, this
mathematical analysis has not been successfully extended to
any larger cycloalkanes, although a combination of symbolic
and numerical calculations have succeeded in characterizing
the conformation space of cycloheptane.39

Another case in which it has proven possible to enumerate
all conformations, and which is of particular interest in restor-
ing ring closure after changing its torsion angles, is known
as the local deformation problem. In this problem, originally
studied by Gõ and Scheraga,40 one is given a chain of six sin-
gle bonds in some standard (e.g., tetrahedral) geometry, and
seeks values for the six torsion angles such that the net rota-
tion and translation places a rigid body attached to the last
bond in a given position and orientation with respect to a rigid
body attached to the first bond. These conditions imply that the
positions and orientations of the first and last bonds themselves
are fixed, and hence the four distances between the atoms of
the two bonds, together with their chirality, are likewise fixed.
By breaking the chain at the middle atom and duplicating it,
we can rephrase the problem as a problem of satisfying four
distance constraints with respect to only four of the six bond
rotations. Figure 5 illustrates this situation.

Using geometric algebra to describe the bond rotations,
together with a symbolic algebra package for Gibbs’ vector
algebra, it was possible to derive closed form expressions for
these squared distances indicated with dashed lines in Figure 5
as functions of the tangents of the half-angles of the bond
rotations. Setting these expressions to the known values of the
squared distances then gives us four equations, three of which
depend on only two of the tangents each, while the fourth
(that which is a consequence of the vanishing of the distance
between the duplicate atoms) depends on all four tangents

Figure 5 The two chains obtained by fixing the positions and
orientations of the first and last bonds in the original chain, breaking
it at the middle atom, and duplicating that atom. The solid lines
indicate chemical bonds, while the dashed lines indicate the distance
constraints that the bond rotations must satisfy. In particular, the
distance between the duplicates of the middle atom must be zero
in any valid solution to the local deformation problem

simultaneously. All four equations are only quadratic in each
tangent separately, and their coefficients can be expressed as
polynomials in the squared distances and signed volumes, in
accord with the basic theory of distance geometry. It is possible
to eliminate all but one of the tangents from these equations,
and so reduce the problem to a univariate one, which can then
be solved by grid search and interpolation. The result is the
first new algorithm for the local deformation problem to be
developed in over 20 years.41

4.2 Drug Design

Distance geometry has been applied to drug design in two
distinct ways. The first is as a means of docking ligands into
binding pockets on receptor proteins of known structure, while
the second is as a means of identifying the ‘pharmacophore’ in
a series of active analogues even in cases in which the receptor
structure is not known. As always, the advantages of distance
geometry in these applications include speed, the ability to
incorporate diverse types of information, and the possibility
of falsifying incorrect assumptions.

4.2.1 Ligand Docking and Screening

Distance geometry was first used as an adjunct to com-
puter graphics methods to fit ligands into binding sites by Jeff
Blaney, as reviewed in Ref. 36. In this work, one typically
hypothesizes a few energitically favorable ligand receptor
contacts, and attempts to generate randomly a number of mod-
els of the complex in which these contacts occur. Of course,
the entire protein structure does not need to be calculated, but
only those atoms in the binding site. As a rule, the binding site
geometry is fixed by constraining all of the distances between
its atoms to their values in the crystal structure of the recep-
tor, although it is not difficult to allow some of the binding
site atoms to vary along with the ligand atoms. The resulting
models are then evaluated and ranked by energy minimization
and computer graphics.

This approach works best if the binding site is a deep
pocket. The packing constraints, i.e., the small but numerous
lower bounds due to the hard-sphere radii, then play a major
role in determining the ligand conformation. The joint effects
of all the distance constraints together is difficult to predict
even with the aid of computer graphics, and can lead to a
surprising degree of conformational confinement. The packing
constraints may even turn out to be incompatible with the
hypothesized contacts, as indicated by repeated failures to find
a conformation that satisfies all the constraints together. In
this case one is forced to consider new patterns of contacts,
or binding modes. This provides an effective screen for a
chemist’s intuition, and can lead to the discovery of binding
modes that were not originally anticipated.

Using the EMBED algorithm, this approach has been used
to predict binding modes in a wide variety of ligand receptor
systems, including phenylhippurate chymotrypsin, phospho-
lipid phospholipase-A2, and bis-acridine double helical
DNA.36 A similar approach has also been demonstrated using
an unusual optimization algorithm called the ellipsoid algo-
rithm, together with the torsion/Euler angles as the confor-
mational variables, which have the advantage of intrinsically
keeping the active site rigid.42 More recently, an extension of
the EMBED algorithm has been developed that also keeps the
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coordinates of a subset of the atoms fixed, and promises to be
very useful in such problems.43

Another interesting extension of the original idea is to pro-
pose not just one binding mode, but rather a collection of
energetically favorable interactions between ligand and site
atoms. The set of all pairs of contacts that are compatible with
the triangle inequality can be represented by a graph, whose
adjacent vertices correspond to compatible pairs. The maximal
cliques (i.e., sets of mutually adjacent vertices) in this docking
graph provide one with a large number of possible binding
modes, which can be filtered versus several simple screens.
The distance bounds implied by these cliques, together with
the covalent structure of the ligand and known spatial struc-
ture of the receptor protein, are used as input for the EMBED
algorithm. This further screens the cliques for geometric feasi-
blity, and at the same time generates structures for additional
refinement. The viability of this largely automatic approach to
discovering binding modes has been demonstrated using com-
plexes of dihydrofolate reductase with Baker’s triazines.44

A recent variation on this approach represents the binding
site by a collection of overlapping spheres, and attempts to
dock the ligand into the site such that each atom of the ligand is
contained in at least one site sphere. This involves a novel dis-
junctive form of constraint, which cannot yet be incorporated
into the EMBED algorithm and must be handled entirely by the
challenging minimization of an appropriate error function.45

In principle, these distance geometry approaches to ligand
docking can also be used to screen entire three-dimensional
databases for ligands that fit a known binding site, in an effort
to find new lead compounds. Because it allows full confor-
mational flexibility, the distance geometry approach is less
efficient than more specialized methods which assume that the
ligand is rigid or allow it at most only limited flexibility.46 As
computers continue to become faster, however, such applica-
tions may prove easier to carry out.

4.2.2 Pharmacophore Identification and Site Mapping

A more challenging class of problems arises when the
structure of the receptor protein is not known, and one wants to
identify the common structural features in a series of analogous
active ligands, with the goal of finding new ligands that bind
better. With the assumption that all the ligands bind to the same
site and with the same binding mode, this leads to the concept
of the pharmacophore. The first distance geometry method for
pharmacophore identification was developed by Scott Dixon
and co-workers.47 In this elegant method, one proposes a
common set of atoms that are present in all the ligands, and
which are supposed to be involved in strong interactions with
the receptor protein. The assumption of a common binding
mode then implies that each ligand can assume a conformation
such that corresponding atoms, one from each ligand’s set,
can all be simultaneously located in the same small region of
space.

The search for such a set of conformations can be formu-
lated as a distance geometry problem as follows. First, one
imposes small upper bounds on the distances between pairs
of corresponding atoms, one from each ligand, of ca. 1 Å.
Next, one allows the ligands to pass through one another, by
resetting all the hard-sphere lower bounds between different
ligands to zero. Then any set of ligand conformations that
satisfies these (physically unrealistic!) constraints is likely to

contain the active conformations of the ligands when they are
bound to the receptor. Moreover, if such a family of conform-
ers cannot be found, then either the proposed pharmacophore
was incorrect, or else one or more of the ligands binds with
a different mode. This method was tested on a series of four
flexible nicotinic receptor agonists using a three-atom phara-
macophore, with results that are compatible with earlier results
derived using only rigid ligands.47

A much more ambitious goal attempts to find not merely a
pharmacophore, but also a model for the binding site together
with a set of binding modes and interaction energies, that can
at least qualitatively account for the binding affinities of a
potentially diverse set of ligands.48 In the simplest version
of this approach, one models the binding site geometry by a
collection of spheres, representing the domains of influence
of functional groups within the site. The binding modes may
then be enumerated in a fashion analogous to that described
above for the case when the true site geometry is known, and
interaction energies can be assigned to the occurrence of each
ligand atom in each site sphere, such that the lowest energy
binding modes parallel the observed binding affinities. The site
model/binding modes can then be tested by trying to construct
conformations for the ligands that place their atoms in the
correct spheres, using the EMBED algorithm. Recent work
along these lines is directed towards the automatic construction
of more sophisticated site models, involving an interesting
generalization of distance bounds to ‘intervals of bounds’.49

4.3 NMR Spectroscopy

The best-known application of distance geometry is as a
means of determining the solution conformations of small
biological macromolecules from NMR data. The only other
method of determining these structures at atomic resolution, X-
ray crystallography, must necessarily observe these molecules
in an unnatural crystalline environment, and cannot be used
in many cases because the molecule cannot be crystallized. A
more detailed account of the application of distance geometry
to NMR data may be found in the author’s article in the com-
panion ‘Encyclopedia of Nuclear Magnetic Resonance’.50 For
completeness’ sake, we nevertheless include a brief summary
of the main ideas here. Because the number of applications
of distance geometry to NMR data now numbers in the hun-
dreds, no attempt will be made to include even representative
literature citations.

4.3.1 The Nature of the Data

The most important geometric information that is avail-
able from NMR spectroscopy comes in the form of contacts
between pairs of hydrogen atoms, i.e., upper bounds on their
distances of 5 Åor less. This information is obtained from
a two-dimensional spectrum called NOESY, whose diago-
nal corresponds to the usual one-dimensional spectrum, and
whose cross-peaks occur at the frequency coordinates of spa-
tially proximal pairs of protons. A less important, but still very
useful, type of information consists of bounds on the torsion
angles about single bonds. This information may be obtained
from a variety of NMR spectra, most notably two-dimensional
COSY spectra, and can be represented by a combination of
constraints on the vicinal distances and corresponding signed
volumes as previously described.
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There are several potentially serious problems involved in
the interpretation of NMR data in terms of distance constraints.
First, a phenomenon called spin diffusion may result in spuri-
ous NOESY cross-peaks between protons that share a common
neighboring proton, but which themselves are greater than 5 Å
apart. Second, biological macromolecules are always flexible
to at least some degree, and NOESY cross-peak intensities are
expected to reflect the inverse average sixth root of the inter-
proton distances. As a result, it is entirely possible for a proton
to appear to be adjacent to two other protons simultaneously,
when the other two protons are nevertheless always greater
than 10 Å apart. Finally, NOESY cross-peak intensities are
affected by numerous spectral artefacts and well as by other
sources of relaxation, which may cause many cross-peaks to
be missing.

The fact that high-resolution protein structures are routinely
calculated from NMR data with no significant residual con-
straint violations in them is a strong indication that these
problems are not serious in most cases. One should never-
theless always evalulate the convergence of the calculations,
and check the residual violations carefully against the data, in
order to be sure that such a problem has not occurred. Although
distance geometry is capable in principle of representing the
actual range of conformations present in solution, the possibil-
ity of missing data means that one cannot automatically assume
that any region of the structure that is not well-defined in the
final conformational ensemble is also disordered in solution, at
least without further evidence. These problems are obviously
not problems in distance geometry per se, but rather in the
interpretation of the data. Fortunately, NMR is also capable
of providing direct information on conformational flexibility,
in the form of relaxation or chemical exchange studies. For
further details, the reader is referred to Ref. 51.

4.3.2 Computational Issues

The first problem that must be solved in order to determine
a conformation from NMR data is to assign the individual
peaks in the NMR spectrum to the corresponding atoms in
the molecule. This assignment problem is usually solved by
a combination of spectroscopic techniques, which need not
concern us here. It is interesting to note, however, that several
attempts have been made to solve some or all of the assignment
problem using distance geometry.52,53 The approach we favor
takes two copies of the molecule, and applies only the covalent
constraints to the first, and only the NOESY constraints to the
second (assuming some arbitrary assignment compatable with
whatever is known at the time). One then defines an error func-
tion that includes terms that are zero whenever any compatible
pair of atoms, one from each copy, have the same spatial posi-
tions (e.g., the methyl groups in any pair of alanines). These
disjunctive constraints are similar to those mentioned above
for ligand docking, and finding spatial structures consistent
with such constraints likewise poses a challenging minimiza-
tion problem. Analogous disjunctive constraints have also been
used to resolve ambiguities between intra- and intermolecular
distances in C2-symmetric complexes.54

Even when all the assignments can be unambiguously
determined, the problem of computing the conformation of
biological macromolecules from NMR data remains difficult
for two reasons. One is the sheer size of the molecules
involved, which often exceeds 1000 atoms even with suitable

united atom approximations. The second lies in the sparsity of
the distance information, usually covering less than 1% of the
million or more different distances in such large molecules;
this is a consequence of the fact that one seldom has any
information at all on distances much greater than 5 Å. Since
triangle inequality bound smoothing is not very effective
at propagating these sparse constraints to all the distances,
particularly their lower limits, the distance matrices obtained
from metrization are also not very good approximations to
the distance matrices of conformations compatible with all
the data. As described above, this problem can be alleviated
by biasing the distances chosen during metrization towards
their upper limits, thereby correcting for the lack of large
lower limits. Nevertheless, a strong reliance on simulated
annealing is unavoidable, if good conformations are to be
found reliably.29,55,56

Because of this lack of information on the longer distances,
many researchers once doubted that the distance constraints
available from the NOESY experiment would be sufficient
to determine a reasonably precise conformation for a globular
protein. As a result, extensive simulations had to be performed
to demonstrate the surprising power that a relatively small
number of contacts has, when combined with the covalent
geometry and the ubiquitous packing constraints.57,58 These
expectations were validated when the first solution conforma-
tion of a complete protein was determined from NMR data
shortly thereafter (see Figure 6).59 With current NMR meth-
ods for elucidating protein structure, upwards of 20 interproton
contacts may be obtained per residue on the average, and the
uncertainties in the relative positions of the atoms in the result-
ing structures can average less than 1 Å.51,60 The situation in
the determination of nucleic acid structures is quite differ-
ent, since these structures tend to be more extended and to
exhibit relatively few long-range interproton contacts. With
such molecules it is important to collect and quantitate as
many torsion angle constraints as possible, and the reliance
on simulated annealing is likely to be even greater.

4.4 Homology Modeling

A more recently demonstrated biological application of
distance geometry is as a means of automatically construct-
ing model protein structures from sequence alignments with
homologues of known structure, a task known more gener-
ally as homology modeling. The usual way of doing this,
which we call the ‘cut and paste’ method, involves align-
ing the structurally conserved regions of the homologues in
space, and then copying the coordinates of the backbone
atoms from selected structures, along with any conserved
sidechain coordinates, and using these directly as the coor-
dinates of those atoms in the unknown structure. Thereafter,
the loops and mutated sidechains are added, usually from a
database of reference conformations, and steric clashes, bro-
ken bonds, and other energetically unfavorable interactions
alleviated by energy minimization. In contrast, the distance
geometry approach builds an entire family of possible confor-
mations at once, including all the atoms together and free of
any energetically disastrous defects. These may then be ana-
lyzed in order to determine which geometric features of the
structure have been determined by the evolutionary and geo-
metric hypotheses, and can also serve as diverse starting points
for subsequent energy refinement.
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Figure 6 Illustration of a five-structure conformational ensemble for the protein BUSI. Only the backbone and aromatic sidechains are shown.
This was the first complete protein structure to be determined in solution from NMR data59

4.4.1 The Computational Procedure

The computational procedure we developed for homology
modeling consists of the following steps:61

(i) The sequences of the homologues of known structure are
aligned with one another, usually so as to make it pos-
sible to superimpose the corresponding backbone atoms
in their structures as closely as possible in space, rather
than by the usual amino acid dissimilarlity measures.

(ii) The sequence of the unknown is added to this multi-
ple sequence alignment, using amino acid dissimilarity
measures, but permitting no insertions or deletions in
the structurally conserved regions.

(iii) Distance constraints among the atoms of the unknown
protein are derived by finding the minimum and maxi-
mum values of the corresponding distances in the homo-
logues (where the correspondence is determined from
the sequence alignment), expanding these ranges some-
what to be safe, and imposing them as bounds on the
unknown.

(iv) Supplementary constraints, including hydrogen bonds
and ranges of torsion angles, are derived from similar
considerations.

(v) These constraints are combined with those that follow
from the covalent structure of the unknown protein, and
used as input for computing a conformational ensemble
via the EMBED algorithm.

Steps (i) and (ii) are probably the most time-consuming
steps, and require considerable subjective judgement. Serious
errors in the alignment obtained in step (ii), which result in

an inserted region that is not long enough to span the space
between its adjacent structurally conserved regions, can be
discovered during bound smoothing or from a convergence
analysis of the structure calculations. In such cases one must
go back and further adjust the alignments in light of this new
knowledge.

Even when all the protons are deleted, the number of atoms
in many proteins is too large to allow all the distances to be
constrained. The majority of the distances chosen in step (iii)
are therefore restricted to pairs of alpha carbons, since it is
most important to get the backbone right. The bounds are
obtained by expanding the minimum and maximum values
of each distance over all the homologues, according to the
formulae

� D �dmax C dmin�/2 � ��dmax � dmin�/2 � υ/n
u D �dmax C dmin�/2 C ��dmax � dmin�/2 C υ/n �63�

where � > 0 is a precision, υ > 0 is a tolerance, and n
is the number of homologues in which corresponding pairs
of atoms occur. Additionally, constraints on the distances
between the heavy atoms, beyond those determined by the
covalent structure, in the same or adjacent amino acids in
the sequence are derived by the same recipe (possibly with
a different precision and tolerance). In the case that mutations
have occurred between the unknown and a homologue, a fixed
set of rules is used to decide how far out in the sidechain the
constraints should go.

The torsion angle constraints are likewise derived by finding
the range of torsion angle values that occur in the homologues,
and expanding it by the same formulae. Once again, a fixed
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set of rules is used to decide how far out in the sidechain
to go in mutated residues, but in this case no constraint is
imposed if the expanded range covers more than 180°. Finally,
the homologues are energy minimized, their hydrogen bonds
identified, and any that are common to all the homologues
with a corresponding donor acceptor pair in the unknown are
imposed on the unknown by suitable distance constraints.

One key feature of the alpha carbon constraints is that
they are uniformly spread across the entire structure, and
include many large lower bounds. As a result, bound smooth-
ing produces relatively good limits on all the distances, and
hence the EMBED algorithm produces good initial coordi-
nates. Although simulated annealing is still needed in order to
satisfactorily fulfill all the constraints, a fairly rapid anneal-
ing schedule can be used with good final results. Even with
a generous precision and tolerance, the above constraints are
sufficient to determine the positions of the backbone atoms
to within 1 Å, or about as well as a high-resolution NMR
structure determination. The only exception occurs in large
insertions, which do not occur in any of the known homolo-
gous structures. There the procedure effectively does a random
search of the possibilities that are sterically and covalently
consistent with the well-defined regions of the structure. Of
course, the accuracy of the final structures can only be as
good as the structural conservation of the unknown relative to
its homologues!

4.4.2 A Case Study with E. coli Flavodoxin

A simplified version of the above procedure was originally
evaluated on the Kazal family of trypsin inhibitors.62 The
first full-scale test was carried out on the Flavodoxin from
E. coli.61 This protein had no crystal structure at the time the
calculations were performed, but structures were available for
four homologous Flavodoxins, namely A. nidulans, C. beijer-
inckii, C. crispus, and D. vulgaris. The sequence alignment
used to generate the constraints is shown in Figure 7. It may
be observed that two of the homologues contained large dele-
tions with respect to the other three Flavodoxins, and that
the E. coli form has an additional six amino acids on its C-
terminus, which are not found in any of the homologues. The
percent identities between the E. coli sequence and those of its
homologues in this alignment were 44%, 16%, 33%, and 23%
for A. nidulans, C. beijerinckii, C. crispus, and D. vulgaris,
respectively.

A total of 13 043 alpha carbon constraints, 8893 local
heavy atom constraints, 452 torsion angle constraints and 116
hydrogen bond constraints were derived from this alignment.
The ten structure conformational ensemble computed from
these constraints had an average alpha carbon RMSD between
all pairs of structures of 0.85 Å (excluding the first three and
last six residues); the corresponding average for all heavy
atoms was 1.60 Å. After a careful restrained energy minization
using solvated molecular dynamics, these numbers increased to
1.00 and 1.66 Å, respectively. A preliminary crystal structure
of the E. coli form at 2.5 Å resolution was subsequently
obtained courtesy of David Hoover and Martha Ludwig at
the University of Michigan. The average RMSDs between this
structure and the computed structures were 1.13 and 2.75 Å for
the alpha and heavy atoms, respectively (see Figure 8); these
numbers increased to 1.24 and 2.84 Å in the energy minimized
ensemble.

A: AKIGLFYGTQTGVTQTIAESIQQEFGG-ESIVD-LNDIANADA-SDLNA
B: MKIVYWSGTGNTEKMAELIAKGIIESGKDVN-TINVSDVNI-DELLN
C: KIGIFFSTSTGNTTEVADFIGKTLG-A--KADAPIDVDDVTDPQALKD
D: AKALIVYGSTTGNTEYTAETIARELADAGYEVD-SRDAASVEAGGLFEG
E:MAITGIFFGSDTGNTENIAKMIQKQLGK--DVAD-VHDIAKSSK-EDLEA

10 20 30 40
A:YDYLIIGCPTWN---VGELQ-SLWEGIYDD-LDSVNFQGKKVAYFGAGDQ
B:EDILILGCSAMGDE-V--LEESEFEPFIEE-ISTK-ISGKKVALFGSYG-
C:YDLLFLGAPTWNTAGDTERSGTSWDEFLYDKLPEVDMKDLPVAIFGLGDA
D:FDLVLLGCSTWGDDSI-ELQ-DDFIPLFDS-LEETGAQGRKVACFGCGDS
E:YDILLLGIPTWY---YGEAQ-CDWDDFFPT-LEEIDFNGKLVALFGCGDQ

50 60 70 80 90
A:VGYSDNFQDAMGILEEKISSLGSQTVGYWPIEGYDFNESKAVRNNQ-FVG
B:--WGD--GKWMRDFEERMNGYGCVVVET---------------------P
C:EGYPDNFCDAIEEIHDCFAKQGAKPVGFSNPDDYDYEESKSVRDGK-FLG
D:-SY-EYFCGAVDAIEEKLKNLGAEIVQD---------------------G
E:EDYAEYFCDALGTIRDIIEPRGATIVGHWPTAGYHFEASKGLADDDHFVG

100 110 120 130 140
A:LAIDEDNQPDLTKNRIKTWVSQLKSEFGL
B:LIVQNE--PDEAEQDCIEFGKKIANI
C:LPLDMVNDQIPMEKRVAGWVEAVVSETGV
D:LRIDGD--PRAARDDIVGWAHDVRGAI
E:LAIDEDRQPELTAERVEKWVKQISEELHLDEILNA

150 160 170

Figure 7 The multiple sequence alignment used for predicting the
structure of E. coli Flavodoxin. The letters before the colon on each
line are A for A. nidulans, B for C. beijerinckii, C for C. crispus, D
for D. vulgaris, and E for E. coli. The remaining letters on each line
are the standard one-letter amino acid codes, while dashes indicate
deletions with respect to one or more of the other sequences. The
numbering is with respect to the E. coli sequence. Letters of the
sequences A D with a line through them were not used for generating
constraints; letters of the sequence E with a line through them had no
corresponding residues in the homologues, and hence were completely
unconstrained

We conclude that the backbone conformations of our mod-
els were nearly as accurate as they were precise, but that there
were significant errors in many of the sidechain conformations.
Given the low sequence identities between the E. coli form and
its homologues, and the inevitable changes of sidechain con-
formation upon mutation, this is not surprising. It remains to
be seen if a constraint generation protocol can be developed
that performs better on the sidechains even in such cases of
low sequence identities.

5 OUTLOOK

We have shown that distance geometry provides molecular
modelers with a powerful set of tools for solving a wide
variety of conformational problems. While there are certainly
limits on what one can do with a purely geometric model of
molecular structure, there are also substantial advantages, both
computational and conceptual, to using such a model whenever
possible. Distance geometry has the additional benefit of a
solid mathematical foundation, which provides a route to
deriving global insights into the ‘structure’ of conformation
space as a whole. Indeed, distance geometry can be regarded
as a means of defining and working with infinite sets of
conformations, thereby achieving a degree of mathematical
parallelism that potentially dwarfs that of any conceivable
computer. This theory is actually in a rather primitive state of
development at this time, and there is the potential for major
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Figure 8 Illustration of the ensemble of 10 E. coli Flavodoxin structures obtained from homology modeling using distance geometry,
superimposed on the crystal structure (heavy line) so as to minimize the coordinate differences to the alpha carbons in residues 4 170.
Only the heavy backbone and aromatic sidechain atoms are shown, together with those of the flavin mononucleotide cofactor (lower left)

advances with far-reaching implications, perhaps even in the
analysis of more complete molecular models based on either
classical or quantum mechanics (cf. Ref. 63).
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12. T. F. Havel and K. Wüthrich, Bull. Math. Biol., 1984, 46,

673 698.
13. P. L. Easthope and T. F. Havel, Bull. Math. Biol., 1989, 51,

173 194.
14. R. Connelly, Invent. Math., 1982, 66, 11 33.
15. T. F. Havel, Biopolymers, 1990, 29, 1565 1585.
16. G. M. J. Crippen, Comput. Chem., 1989, 10, 896 902.
17. W. Glunt, T. L. Hayden, and M. Raydan, J. Comput. Chem.,

1993, 14, 114 120.
18. G. M. Crippen and T. F. Havel, Acta Crystallogr., Sect. A,

1978, 34, 282 284.
19. J. Kuszewski, M. Nilges, and A. T. Brünger, J. Biomol. NMR,
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