Exercise 1

(a) Prove: every SEG-graph has a representation where all segment endpoints are integral.

(b) Prove: the problem of deciding whether or not a graph has a 100-STRING representation is in NP.

Exercise 2

Let \(U \subseteq \mathbb{R}^2 \) be an open arcwise connected set; that is, every two points of \(U \) can be connected by a simple curve. Prove, as rigorously as possible, that every two points of \(U \) can also be connected by a polygonal curve.

Exercise 3

Recall that we call a weak realization standard if the corresponding drawing of \(G \) is standard, by which we mean that the edges are drawn as polygonal curves, every two intersect at finitely many points, and no three edges have a common intersection (where sharing a vertex does not count).

(a) Prove that if \((G, R)\) has a weak realization, then it also has a standard weak realization.

(b) Prove that if \((G, R)\) has a weak realization \(W \) with finitely many edge intersections in which no three edges have a common intersection, then it also has a standard weak realization \(W' \) with at most as many edge intersections as in \(W \).

Exercise 4

Given graphs \(G_1 = (V, E_1), \ldots, (V, E_k) \), simultaneous geometric embedding with mapping (k-SGE) is the problem of finding a set \(P \) of \(|V| \) points in the plane and a bijection \(\chi : V \to P \) such that \(\chi \) is a crossing-free straight-line drawing for all \(G_i \).

Given an abstract topological graph \((G, R)\), a weak straight-line realization is a straight-line drawing of \(G \) where all crossing pairs are in \(R \).

Prove that k-SGE is polynomially equivalent to the problem of finding a weak straight-line realization.