Exercise 1: Clique in Unit Disk Intersection Graphs

Consider a point set P with corresponding intersection graph $G = (P, E)$ where $uv \in E$ if and only if $d(u, v) \leq 2$. We want to construct an algorithm to find a maximum clique in G in polynomial time.

(a) Consider a maximum clique C in G. Let $a, b \in C$ be two points which maximize distance $d(a, b)$. Prove that all points of C are in the lens of ab.

(b) Prove that all points in a half-lens of ab form a clique in G.

(c) Prove König’s Theorem:

Theorem 1 (König 1931). The cardinality of a maximum matching in a bipartite graph G' is equal to the cardinality of a minimum vertex cover of G'.

(d) Give an algorithm to compute the size of a maximum clique of G in polynomial time.

Exercise 2: Transversal Numbers

Let γ be the smallest integer such that the following always holds: for every clique C in a disk intersection graph, there exists a set of at most γ points that, together, touch every disk in C. It is known that $\gamma = 4$.

(a) Suppose that we consider unit disk intersection graphs instead of disk intersection graphs and let γ' be the constant corresponding to this restricted setting. Give a constant c and prove that $\gamma' < c$.

(b) Prove that $\gamma \geq 3$.

Exercise 3: Clique in Disk Intersection Graphs

Consider the following algorithm for finding a clique in a disk intersection graph (where the representation is given):

1. for each pair c, c' of cells of the arrangement:
 a) consider the set $D_{c,c'}$ of disks that contain c, or c', or both – this set induces the complement of a bipartite graph
 b) find a maximum clique $C_{c,c'}$ in this graph
2. output the largest clique $C_{c,c'}$ among all pairs c, c'

From the fact that $\gamma = 4$, prove that the clique returned by the algorithm has size at least half that of the maximum clique.
Exercise 4: Gaps in the Proof

In the lecture on the kissing disks theorem, several parts of the proof were omitted. In this exercise, we prove these missing parts.

(a) Let u, v and w be the centers of three mutually tangent disks on the plane with radii r_u, r_v and r_w, respectively. Prove formally that if we increase r_u and decrease r_v and r_w so that the disks remain tangent, then $\angle uvw$ will decrease.

(b) Let G be a maximal planar graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ for $n > 3$. For any $U \subseteq V(G)$, let $F(U)$ denote the set of all faces (including the outer face) of G having at least one vertex that belongs to U. Prove that $|F(U)| > 2|U|$ for any U with $1 \leq |U| \leq n-3$.