How to find a maximum weight matching in a bipartite graph?

In the maximum weighted matching problem a non-negative weight \(w_{i,j} \) is assigned to each edge \(x_i y_j \) of \(K_{n,n} \) and we seek a perfect matching \(M \) to maximize the total weight \(w(M) = \sum_{e \in M} w(e) \).

With these weights, a (weighted) cover is a choice of labels \(u_1, \ldots, u_n \) and \(v_1, \ldots, v_n \), such that \(u_i + v_j \geq w_{i,j} \) for all \(i, j \). The cost \(c(u, v) \) of a cover \((u, v) \) is \(\sum u_i + \sum v_j \). The minimum weighted cover problem is that of finding a cover of minimum cost.

Duality Lemma For a perfect matching \(M \) and a weighted cover \((u, v) \) in a bipartite graph \(G \), \(c(u, v) \geq w(M) \). Also, \(c(u, v) = w(M) \) iff \(M \) consists of edges \(x_i y_j \) such that \(u_i + v_j = w_{i,j} \). In this case, \(M \) and \((u, v) \) are both optimal.
The algorithm

The equality subgraph $G_{u,v}$ for a weighted cover (u, v) is the spanning subgraph of $K_{n,n}$ whose edges are the pairs x_iy_j such that $u_i + v_j = w_{i,j}$. In the cover, the excess for i, j is $u_i + v_j - w_{i,j}$.

Hungarian Algorithm

Input. A matrix $(w_{i,j})$ of weights on the edges of $K_{n,n}$ with partite sets X and Y.

Idea. Iteratively adjusting a cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching.

Initialization. Let $u_i = \max\{w_{i,j} : j = 1, \ldots, n\}$ and $v_j = 0$.
Iteration.

Form $G_{u,v}$ and find a maximum matching M in it.

IF M is a perfect matching, THEN

 stop and report M as a maximum weight matching and (u, v) as a minimum cost cover

ELSE

 let Q be a vertex cover of size $|M|$ in $G_{u,v}$.

 $R := X \cap Q$
 $T := Y \cap Q$

 $\epsilon := \min\{u_i + v_j - w_{i,j} : x_i \in X \setminus R, y_j \in Y \setminus T\}$

 Update u and v:

 $u_i := u_i - \epsilon$ if $x_i \in X \setminus R$
 $v_j := v_j + \epsilon$ if $y_j \in T$

Iterate

Theorem The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover.
The Assignment Problem — An example

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 7 & 2 \\
1 & 3 & 4 & 4 & 5 \\
3 & 6 & 2 & 8 & 7 \\
4 & 1 & 3 & 5 & 4
\end{pmatrix}
\]

Excess Matrix

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
4 & 3 & 2 & 1 & 0 \\
2 & 1 & 0 & 1 & 6 \\
4 & 2 & 1 & 1 & 0 \\
5 & 2 & 6 & 0 & 1 \\
1 & 4 & 2 & 0 & 1
\end{pmatrix}
\]

Equality Subgraph

\[\epsilon = 1\]
\[
\begin{pmatrix}
0 & 0 & 1 & 1 & 1 \\
3 & 2 & 2 & 1 & 0 \\
1 & 0 & 0 & 1 & 6 \\
3 & 1 & 1 & 1 & 0 \\
4 & 1 & 6 & 0 & 1 \\
0 & 3 & 2 & 0 & 1 \\
\end{pmatrix}
\]

\[\epsilon = 1\]

\[
\begin{pmatrix}
1 & 0 & 1 & 2 & 2 \\
3 & 1 & 1 & 1 & 0 \\
2 & 0 & 0 & 2 & 7 \\
3 & 3 & 0 & 1 & 0 \\
4 & 0 & 5 & 0 & 1 \\
0 & 2 & 1 & 0 & 1 \\
\end{pmatrix}
\]

\[\text{DONE!!}\]
The Duality Lemma states that if $w(M) = c(u, v)$ for some cover (u, v), then M is maximum weight.

We found a maximum weight matching (transversal). The fact that it is maximum is certified by the indicated cover, which has the same cost:

$$
\begin{align*}
&1\ 0\ 1\ 2\ 2 \\
&3 \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 7 & 2 \\
3 & 1 & 3 & 4 & 4 & 5 \\
6 & 3 & 6 & 2 & 8 & 7 \\
3 & 4 & 1 & 3 & 5 & 4 \\
\end{pmatrix} \\
&w(M) = 5 + 7 + 4 + 8 + 4 = 28 = \\
&1 + 0 + 1 + 2 + 2 + \\
&3 + 7 + 3 + 6 + 3 = c(u, v)
\end{align*}
$$
Hungarian Algorithm — Proof of correctness

Proof. If the algorithm ever terminates and $G_{u,v}$ is the equality subgraph of a (u, v), which is indeed a cover, then M is a m.w.m. and (u, v) is a m.c.c. by Duality Lemma.

Why is (u, v), created by the iteration, a cover?
Let $x_i y_j \in E(K_{n,n})$. Check the four cases.

$x_i \in R, \quad y_j \in Y \setminus T \quad \Rightarrow \quad u_i$ and v_j do not change.

$x_i \in R, \quad y_j \in T \quad \Rightarrow \quad u_i$ does not change v_j increases.

$x_i \in X \setminus R, \quad y_j \in T \quad \Rightarrow \quad u_i$ decreases by ϵ, v_j increases by ϵ.

$x_i \in X \setminus R, \quad y_j \in Y \setminus T \quad \Rightarrow \quad u_i + v_j \geq w_{i,j}$
by definition of ϵ.

Why does the algorithm terminate?
M is a matching in the new $G_{u,v}$ as well. So either
(i) max matching gets larger or
(ii) # of vertices reached from U by M-alternating paths grows. (U is the set of unsaturated vertices of M in X.)
An odd component is a connected component with an odd number of vertices. Denote by $o(G)$ the number of odd components of a graph G.

Theorem. (Tutte, 1947) A graph G has a perfect matching iff $o(G - S) \leq |S|$ for every subset $S \subseteq V(G)$.

Proof.

⇒ Easy.

⇐ (Lovász, 1975) Consider a counterexample G with the maximum number of edges.

Claim. $G + xy$ has a perfect matching for any $xy \notin E(G)$.
Proof of Tutte’s Theorem — Continued

Define $U := \{v \in V(G) : d_G(v) = n(G) - 1\}$

Case 1. $G - U$ consists of disjoint cliques.

Proof: Straightforward to construct a perfect matching of G.

Case 2. $G - U$ is not the disjoint union of cliques.

Proof: Derive the existence of the following subgraph.

Obtain contradiction by constructing a perfect matching M of G using perfect matchings M_1 and M_2 of $G + xz$ and $G + yw$, respectively.
Corollaries

Corollary. (Berge, 1958) For a subset \(S \subseteq V(G) \) let
\[d(S) = \omega(G - S) - |S|. \] Then
\[
2\alpha'(G') = \min\{n - d(S) : S \subseteq V(G')\}.
\]

Proof. \((\leq)\) Easy.
\((\geq)\) Apply Tutte’s Theorem to \(G \lor K_d \).

Corollary. (Petersen, 1891) Every 3-regular graph with no cut-edge has a perfect matching.

Proof. Check Tutte’s condition. Let \(S \subseteq V(G') \).
Double-count the number of edges between an \(S \) and the odd components of \(G - S \).
Observe that between any odd component and \(S \) there are at least three edges.
Factors

A factor of a graph is a spanning subgraph. A k-factor is a spanning k-regular subgraph.

Every regular bipartite graph has a 1-factor.

Not every regular graph has a 1-factor.

But...

Theorem. (Petersen, 1891) Every $2k$-regular graph has a 2-factor.

Proof. Use Eulerian cycle of G to create an auxiliary k-regular bipartite graph H, such that a perfect matching in H corresponds to a 2-factor in G.