
Chapter 1

Fundamentals

1.1 Models of Computation

When designing algorithms, one has to agree on a model of computation according to
which these algorithms can be executed. There are various such models, but when it
comes to geometry some are more convenient to work with than others. Even using
very elementary geometric operations—such as taking the center of a circle defined by
three points or computing the length of a given circular arc—the realms of rational
and even algebraic numbers are quickly left behind. Representing the resulting real
numbers/coordinates would be a rather painful task in, for instance, a Turing machine
type model of computation.

Therefore, other models of computation are more prominent in the area of geometric
algorithms and data structures. In this course we will be mostly concerned with two
models: the Real RAM and the algebraic computation/decision tree model. The
former is rather convenient when designing algorithms, because it sort of abstracts from
the aforementioned representation issues by simply assuming that it can be done. The
latter model typically appears in the context of lower bounds, that is, proofs that certain
problems cannot be solved more efficiently than some function depending on the problem
size (and possibly some other parameters).

So let us see what these models are in more detail.

Real RAM Model. A memory cell stores a real number (that is what the “Real” stands
for)1. Any single arithmetic operation (addition, subtraction, multiplication, division,
and k-th root, for small constant k) or comparison can be computed in constant time.2
This is a quite powerful (and somewhat unrealistic) model of computation, as a single
real number in principle can encode an arbitrary amount of information. Therefore we

1RAM stands for random access machine, meaning that every memory cell can be accessed in constant
time. Not like, say, a list where one always has to start from the first element.

2In addition, sometimes also logarithms, other analytic functions, indirect addressing (integral), or floor
and ceiling are used. As adding some of these operations makes the model more powerful, it is usually
specified and emphasized explicitly when an algorithm uses them.

9

Chapter 1. Fundamentals Geometry: C&A 2014

have to ensure that we do not abuse the power of this model. For instance, we may want
to restrict the numbers that are manipulated by any single arithmetic operation to be
bounded by some fixed polynomial in the numbers that appear in the input.

On the positive side, the real RAM model allows to abstract from the lowlands of
numeric and algebraic computation and to concentrate on the algorithmic core from a
combinatorial point of view.

But there are also downsides to using such a powerful model. In particular, it may
be a challenge to efficiently implement a geometric algorithm designed for the real RAM
on an actual computer. With bounded memory there is no way to represent general
real numbers explicitly, and operations using a symbolic representation can hardly be
considered constant time.

When interested in lower bounds, it is convenient to use a model of computation that
encompasses and represents explicitly all possible execution paths of an algorithm. This
is what the following model is about.

Algebraic Computation Trees (Ben-Or [1]). A computation is regarded as a binary tree.

≤ 0

a− b

b− ca− c

≤ 0 ≤ 0

a c b c

The leaves contain the (possible) results of the compu-
tation.

Every node v with one child has an operation of the
form +,−, ∗, /,√, . . . associated to it. The operands of
this operation are constant input values, or among the
ancestors of v in the tree.

Every node v with two children has associated to it a
branching of the form > 0, � 0, or = 0. The branch
is with respect to the result of v’s parent node. If the
expression yields true, the computation continues with
the left child of v; otherwise, it continues with the right
child of v.

The term decision tree is used if all of the final results (leaves) are either true or
false. If every branch is based on a linear function in the input values, we face a linear
decision tree. Analogously one can define, say, quadratic decision trees.

The complexity of a computation or decision tree is the maximum number of vertices
along any root-to-leaf path. It is well known that Ω(n logn) comparisons are required
to sort n numbers. But also for some problems that appear easier than sorting at first
glance, the same lower bound holds. Consider, for instance, the following problem.

Element Uniqueness

Input: {x1, . . . , xn} ⊂ R, n ∈ N.

Output: Is xi = xj, for some i, j ∈ {1, . . . ,n} with i �= j?

10

Geometry: C&A 2014 1.2. Basic Geometric Objects

Ben-Or [1] has shown that any algebraic decision tree to solve Element Uniqueness
for n elements has complexity Ω(n logn).

1.2 Basic Geometric Objects

We will mostly be concerned with the d-dimensional Euclidean space Rd, for small
d ∈ N; typically, d = 2 or d = 3. The basic objects of interest in Rd are the following.

Points. A point p, typically described by its d Cartesian
coordinates p = (x1, . . . , xd).

p = (−4, 0)

q = (2,−2)

r = (7, 1)

Directions. A vector v ∈ S
d−1 (the (d − 1)-dimensional

unit sphere), typically described by its d Cartesian coor-

dinates v = (x1, . . . , xd), with ||v|| =
��

d

i=1 xi
2 = 1.

Lines. A line is a one-dimensional affine subspace. It can
be described by two distinct points p and q as the set of
all points r that satisfy r = p+ λ(q− p), for some λ ∈ R.

p

q

While any pair of distinct points defines a unique line, a line in R2 contains infinitely
many points and so it may happen that a collection of three or more points lie on a line.
Such a collection of points is termed collinear 3.

Rays. If we remove a single point from a line and take
the closure of one of the connected components, then we
obtain a ray. It can be described by two distinct points p
and q as the set of all points r that satisfy r = p+λ(q−p),
for some λ � 0. The orientation of a ray is the direction
(q− p)/�q− p�.

p

q

Line segment. A line segment is a compact connected sub-
set of a line. It can be described by two points p and q
as the set of all points r that satisfy r = p+ λ(q− p), for
some λ ∈ [0, 1]. We will denote the line segment through
p and q by pq. Depending on the context we may allow
or disallow degenerate line segments consisting of a single
point only (p = q in the above equation).

p

q

Hyperplanes. A hyperplane H is a (d−1)-dimensional affine subspace. It can be described
algebraically by d + 1 coefficients λ1, . . . , λd+1 ∈ R, where �(λ1, . . . , λd+1)� = 1, as the
set of all points (x1, . . . , xd) that satisfy the linear equation H :

�
d

i=1 λixi = λd+1.
3Not colinear, which refers to a notion in the theory of coalgebras.

11

Chapter 1. Fundamentals Geometry: C&A 2014

If the above equation is converted into an inequality, we obtain the algebraic descrip-
tion of a halfspace (in R2: halfplane).

Spheres and balls. A sphere is the set of all points that are equidistant to a fixed point.
It can be described by a point c (center) and a number ρ ∈ R (radius) as the set of all
points p that satisfy ||p − c|| = ρ. The ball of radius ρ around p consists of all points p
that satisfy ||p− c|| � ρ.

1.3 Graphs

In this section we review some basic definitions and properties of graphs. For more
details and proofs, refer to any standard textbook on graph theory [2, 3, 5].

An (undirected) graph G = (V,E) is defined on a set V of vertices. Unless explicitly
stated otherwise, V is always finite. Vertices are associated to each other through edges
which are collected in the set E ⊆

�
V

2

�
. The two vertices defining an edge are adjacent

to each other and incident to the edge.
For a vertex v ∈ V, denote by NG(v) the neighborhood of v in G, that is, the set

of vertices from G that are adjacent to v. Similarly, for a set W ⊂ V of vertices define
NG(W) :=

�
w∈W

NG(w). The degree degG(v) of a vertex v ∈ V is the size of its
neighborhood, that is, the number of edges from E incident to v. The subscript is often
omitted when it is clear which graph it refers to.

Lemma 1.1 (Handshaking Lemma) In any graph G = (V,E) we have
�

v∈V
deg(v) = 2|E|.

Two graphs G = (V,E) and H = (U,W) are isomorphic if there is a bijection
φ : V → U such that {u, v} ∈ E ⇐⇒ {φ(u),φ(v)} ∈ W. Such a bijection φ is called
an isomorphism between G and H. The structure of isomorphic graphs is identical and
often we do not distinguish between them when looking at them as graphs.

For a graph G denote by V(G) the set of vertices and by E(G) the set of edges. A
graph H = (U, F) is a subgraph of G if U ⊆ V and F ⊆ E. In case that U = V the graph
H is a spanning subgraph of G. For a set W ⊆ V of vertices denote by G[W] the induced
subgraph of W in G, that is, the graph (W,E ∩

�
W

2

�
). For F ⊆ E let G \ F := (V,E \ F).

Similarly, for W ⊆ V let G\W := G[V \W]. In particular, for a vertex or edge x ∈ V ∪ E
we write G \ x for G \ {x}. The union of two graphs G = (V,E) and H = (W, F) is the
graph G ∪ H := (V ∪ W,E ∪ F).

For an edge e = {u, v} ∈ E the graph G/e is obtained from G \ {u, v} by adding a new
vertex w with NG/e(w) := (NG(u) ∪NG(v)) \ {u, v}. This process is called contraction
of e in G. Similarly, for a set F ⊆ E of edges the graph G/F is obtained from G by
contracting all edges from F.

Graph traversals. A walk in G is a sequence W = (v1, . . . , vk), k ∈ N, of vertices such
that vi and vi+1 are adjacent in G, for all 1 � i < k. The vertices v1 and vk are referred

12

Geometry: C&A 2014 1.3. Graphs

to as the walk’s endpoints, the other vertices are called interior. A walk with endpoints
v1 and vk is sometimes referred to as a walk between v1 and vk. For a walk W denote
by V(W) its set of vertices and by E(W) its set of edges (pairs of vertices adjacent along
W). We say that W visits the vertices and edges in V(W) ∪ E(W). A walk for which
both endpoints coincide, that is, v1 = vk, is called closed. Otherwise the walk is open.

If a walk uses each edge of G at most once, it is a trail. A closed walk that visits each
edge and each vertex at least once is called a tour of G. An Euler tour is both a trail
and a tour of G, that is, it visits each edge of G exactly once. A graph that contains an
Euler tour is termed Eulerian.

If the vertices v1, . . . , vk of a closed walk W are pairwise distinct except for v1 = vk,
then W is a cycle of size k − 1. If the vertices v1, . . . , vk of a walk W are pairwise
distinct, then W is a path of size k. A Hamilton cycle (path) is a cycle (path) that
visits every vertex of G. A graph that contains a Hamilton cycle is Hamiltonian.

Two trails are edge-disjoint if they do not share any edge. Two paths are called
(internally) vertex-disjoint if they do not share any vertices (except for possibly common
endpoints). For two vertices s, t ∈ V any path with endpoints s and t is called an (s, t)-
path or a path between s and t.

Connectivity. Define an equivalence relation “∼” on V by setting a ∼ b if and only if
there is a path between a and b in G. The equivalence classes with respect to “∼” are
called components of G and their number is denoted by ω(G). A graph G is connected
if ω(G) = 1 and disconnected, otherwise.

A set C ⊂ V of vertices in a connected graph G = (V,E) is a cut-set of G if G \ C is
disconnected. A graph is k-connected, for a positive integer k, if |V | � k + 1 and there
is no cut-set of size less than k. Similarly a graph G = (V,E) is k-edge-connected, if
G \ F is connected, for any set F ⊆ E of less than k edges. Connectivity and cut-sets are
related via the following well-known theorem.

Theorem 1.2 (Menger [4]) For any two non-adjacent vertices u, v of a graph G = (V,E),
the size if a minimum cut that disconnects u and v is the same as the maximum
number of pairwise internally vertex-disjoint paths between u and v.

Specific families of graphs. A graph with a maximum number of edges, that is, (V,
�
V

2

�
), is

called a clique. Up to isomorphism there is only one clique on n vertices; it is referred to
as the complete graph Kn, n ∈ N. At the other extreme, the empty graph Kn consists of
n isolated vertices that are not connected by any edge. A set of U of vertices in a graph G
is independent if G[U] is an empty graph. A graph whose vertex set can be partitioned
into at most two independent sets is bipartite. An equivalent characterization states
that a graph is bipartite if and only if it does not contain any odd cycle. The bipartite
graphs with a maximum number of edges (unique up to isomorphism) are the complete
bipartite graphs Km,n, for m,n ∈ N. They consist of two disjoint independent sets of
size m and n, respectively, and all mn edges in between.

13

Chapter 1. Fundamentals Geometry: C&A 2014

A forest is a graph that is acyclic, that is, it does not contain any cycle. A connected
forest is called tree and its leaves are the vertices of degree one. Every connected graph
contains a spanning subgraph which is a tree, a so called spanning tree. Beyond the
definition given above, there are several equivalent characterizations of trees.

Theorem 1.3 The following statements for a graph G are equivalent.

(1) G is a tree (i.e., it is connected and acyclic).

(2) G is a connected graph with n vertices and n− 1 edges.

(3) G is an acyclic graph with n vertices and n− 1 edges.

(4) Any two vertices in G are connected by a unique path.

(5) G is minimally (edge-)connected, that is, G is connected but removal of any
single edge yields a disconnected graph.

(6) G is maximally acyclic, that is, G is acyclic but adding any single edge creates
a cycle.

Directed graphs. In a directed graph or, short, digraph D = (V,E) the set E consists of
ordered pairs of vertices, that is, E ⊆ V2. The elements of E are referred to as arcs. An
arc (u, v) ∈ E is said to be directed from its source u to its target v. For (u, v) ∈ E we
also say “there is an arc from u to v in D”. Usually, we consider loop-free graphs, that
is, arcs of the type (v, v), for some v ∈ V, are not allowed.

The in-degree deg−
D
(v) := |{(u, v) | (u, v) ∈ E}| of a vertex v ∈ V is the number of

incoming arcs at v. Similarly, the out-degree deg+
D
(v) := |{(v,u) | (v,u) ∈ E}| of a vertex

v ∈ V is the number of outgoing arcs at v. Again the subscript is often omitted when
the graph under consideration is clear from the context.

From any undirected graph G one can obtain a digraph on the same vertex set by
specifying a direction for each edge of G. Each of these 2|E(G)| different digraphs is called
an orientation of G. Similarly every digraph D = (V,E) has an underlying undirected
graph G = (V, { {u, v} | (u, v) ∈ E or (v,u) ∈ E}). Hence most of the terminology for
undirected graphs carries over to digraphs.

A directed walk in a digraph D is a sequence W = (v1, . . . , vk), for some k ∈ N, of
vertices such that there is an arc from vi to vi+1 in D, for all 1 � i < k. In the same way
we define directed trails, directed paths, directed cycles, and directed tours.

References
[1] Michael Ben-Or, Lower bounds for algebraic computation trees. In Proc. 15th Annu.

ACM Sympos. Theory Comput., pp. 80–86, 1983, URL http://dx.doi.org/10.

1145/800061.808735.

14

Geometry: C&A 2014 1.3. Graphs

[2] John Adrian Bondy and U. S. R. Murty, Graph Theory, vol. 244 of Graduate texts
in Mathematics. Springer-Verlag, New York, 2008, URL http://dx.doi.org/10.

1007/978-1-84628-970-5.

[3] Reinhard Diestel, Graph Theory. Springer-Verlag, Heidelberg, 4th edn., 2010.

[4] Karl Menger, Zur allgemeinen Kurventheorie. Fund. Math., 10, 1, (1927), 96—-115,
URL http://matwbn.icm.edu.pl/ksiazki/fm/fm10/fm1012.pdf.

[5] Douglas B. West, An Introduction to Graph Theory. Prentice Hall, Upper Saddle
River, NJ, 2nd edn., 2001.

15

Chapter 2

Plane Embeddings

In this chapter we investigate properties of plane embeddings and under which conditions
they hold.

2.1 Embeddings and planarity

A curve is a set C ⊂ R2 that is of the form {γ(t) | 0 � t � 1}, where γ : [0, 1] → R2 is a
continuous function. The function γ is called a parameterization of C. The points γ(0)
and γ(1) are the endpoints of the curve. For a closed curve, we have γ(0) = γ(1). A
curve is simple, if it admits a parameterization γ that is injective on [0, 1]. For a closed
simple curve we allow as an exception that γ(0) = γ(1). The following famous theorem
describes an important property of the plane. A proof can, for instance, be found in the
book of Mohar and Thomassen [14].

Theorem 2.1 (Jordan) Any simple closed curve C partitions the plane into exactly two
regions (connected open sets), each bounded by C.

Figure 2.1: A Jordan curve and two points in one of its faces (left); a simple closed
curve that does not disconnect the torus (right).

Observe that, for instance, on the torus there are closed curves that do not disconnect
the surface (and so the theorem does not hold there).

An embedding or drawing of a (multi-)graph G = (V,E) into the plane is a function
f : V ∪ E → R2 that assigns

17

Chapter 2. Plane Embeddings Geometry: C&A 2014

a point f(v) to every vertex v ∈ V and

a simple curve f({u, v}) with endpoints f(u) and f(v) to every edge {u, v} ∈ E,

such that f is injective on V and f({u, v}) ∩ f(V) = {f(u), f(v)}, for every edge {u, v} ∈ E.
A common point f(e)∩f(e �) between two curves that represent edges e �= e � ∈ E is called
a crossing, unless it is a common endpoint of e and e �. In many cases it is convenient
to demand that no three edges share a crossing.

Planar vs. plane. A multigraph is planar if it admits an embedding without crossings
into the plane. Such an embedding is also called a plane or crossing-free embedding. A
planar graph together with a particular plane embedding is called a plane graph. Note
the distinction between “planar” and “plane”: the former indicates the possibility of an
embedding, whereas the latter refers to a concrete embedding (Figure 2.2).

Figure 2.2: A planar graph (left) and a plane drawing of it (right).

A geometric graph is a graph together with an embedding, in which all edges are
realized as straight-line segments. Note that such an embedding is completely defined by
the mapping for the vertices. A plane geometric graph is also called a plane straight-line
graph (PSLG). In contrast, a plane graph in which the edges may form arbitrary simple
curves is called a topological plane graph.

The faces of a plane multigraph are the maximally connected regions of the plane
that do not contain any point used by the embedding (as the image of a vertex or an
edge). Each embedding of a finite multigraph has exactly one unbounded face, also
called outer or infinite face. Using stereographic projection, it is not hard to show that
the role of the unbounded face is not as special at it may seem at first glance.

Theorem 2.2 If a graph G has a plane embedding in which some face is bounded by
the cycle (v1, . . . , vk), then G also has a plane embedding in which the unbounded
face is bounded by the cycle (v1, . . . , vk).

Proof. (Sketch) Take a plane embedding Γ of G and map it to the sphere using stereo-
graphic projection : Imagine R2 being the x/y-plane in R3 and place a unit sphere S
such that its south pole touches the origin. We obtain a bijective continuous mapping
between R2 and S \ {n}, where n is the north pole of S, as follows: A point p ∈ R2 is
mapped to the point p � that is the intersection of the line through p and n with S, see
Figure 2.3.

18

Geometry: C&A 2014 2.1. Embeddings and planarity

n

p

p �

(a) Three-dimensional view.

n

p

p �

q

q �

0
(b) Cross-section view.

Figure 2.3: Stereographic projection.

Consider the resulting embedding Γ � of G on S: The infinite face of Γ corresponds
to the face of Γ � that contains the north pole n of S. Now rotate the embedding Γ � on
S such that the desired face contains n. Mapping back to the plane using stereographic
projection results in an embedding in which the desired face is the outer face.

Exercise 2.3 Consider a graph G with the plane embedding depicted in Figure 2.4.
Give a plane embedding of G in which the cycle 1, 2, 3 bounds the outer face.

2

3

5 4

1

Figure 2.4: Plane embedding of G.

Duality. Every plane graph G has a dual G∗, whose vertices are the faces of G and
two are connected by an edge in G∗, if and only if they have a common edge in G. In
general, G∗ is a multigraph (may contain loops and multiple edges) and it depends on
the embedding. That is, an abstract planar graph G may have several non-isomorphic
duals. If G is a connected plane graph, then (G∗)∗ = G. We will show later in Section 2.3
that the dual of a 3-connected planar is unique (up to isomorphism).

The Euler Formula and its ramifications. One of the most important tools for planar graphs
(and more generally, graphs embedded on a surface) is the Euler–Poincaré Formula.

Theorem 2.4 (Euler’s Formula) For every connected plane graph with n vertices, e edges,
and f faces, we have n− e+ f = 2.

19

Chapter 2. Plane Embeddings Geometry: C&A 2014

G

G∗

G

G∗

Figure 2.5: Two plane drawings and their duals for the same planar graph.

In particular, this shows that for any planar graph the number of faces is the same in
every plane embedding. Therefore, the number of faces is actually a parameter of an
abstract planar graph. It also follows (stated below as a corollary) that planar graphs are
sparse, that is, they have a linear number of edges (and faces) only. So the asymptotic
complexity of a planar graph is already determined by its number of vertices.

Corollary 2.5 A simple planar graph on n � 3 vertices has at most 3n − 6 edges and
at most 2n− 4 faces.

Proof. Consider a simple planar graph G on n � 3 vertices. Without loss of generality
we may assume that G is connected. (If not, add edges between components of G until
the graph is connected. The number of faces remains unchanged and the number of
edges only increases.) Consider a plane drawing of G and denote by E the set of edges
and by F the set of faces of G. Let

X = {(e, f) ∈ E× F | e bounds f}

denote the set of incident edge-face pairs. We count X in two different ways.
First note that each edge bounds at most two faces and so |X| � 2 · |E|.
Second note that in a simple connected planar graph on three or more vertices every

face is bounded by at least three vertices. Therefore |X| � 3 · |F|.
Using Euler’s Formular we conclude that

4 = 2n− 2|E|+ 2|F| � 2n− 3|F|+ 2|F| = 2n− |F| and
6 = 3n− 3|E|+ 3|F| � 3n− 3|E|+ 2|E| = 3n− |E| ,

which yields the claimed bounds.
It also follows that the degree of a “typical” vertex in a planar graph is a small

constant. There exist several variations of this statement, a few more of which we will
encounter during this course.

Corollary 2.6 The average vertex degree in a simple planar graph is less than six.

Exercise 2.7 Prove Corollary 2.6.

Exercise 2.8 Show that neither K5 (the complete graph on five vertices) nor K3,3 (the
complete bipartite graph where both classes have three vertices) is planar.

20

Geometry: C&A 2014 2.1. Embeddings and planarity

Characterizing planarity. The classical theorems of Kuratowski and Wagner provide a char-
acterization of planar graphs in terms of forbidden sub-structures. A subdivision of a
graph G = (V,E) is a graph that is obtained from G by replacing each edge with a path.

Theorem 2.9 (Kuratowski [12, 17]) A graph is planar if and only if it does not contain
a subdivision of K3,3 or K5.

A minor of a graph G = (V,E) is a graph that is obtained from G using zero or more
edge contractions, edge deletions, and/or vertex deletions.

Theorem 2.10 (Wagner [20]) A graph is planar if and only if it does not contain K3,3
or K5 as a minor.

In some sense, Wagner’s Theorem is a special instance1 of a much more general theorem.

Theorem 2.11 (Graph Minor Theorem, Robertson/Seymour [16]) Every minor-closed family
of graphs can be described in terms of a finite set of forbidden minors.

Being minor-closed means that for every graph from the family also all of its minors be-
long to the family. For instance, the family of planar graphs is minor-closed because pla-
narity is preserved under removal of edges and vertices and under edge contractions. The
Graph Minor Theorem is a celebrated result that was established by Robertson and Sey-
mour in a series of twenty papers, see also the survey by Lovász [13]. They also described
an O(n3) algorithm (with horrendous constants, though) to decide whether a graph on n
vertices contains a fixed (constant-size) minor. Later, Kawarabayashi et al. [10] showed
that this problem can be solved in O(n2) time. As a consequence, every minor-closed
property can be decided in polynomial time.

Unfortunately, the result is non-constructive in the sense that in general we do not
know how to obtain the set of forbidden minors for a given family/property. For instance,
for the family of toroidal graphs (graphs that can be embedded without crossings on the
torus) more than 16 �000 forbidden minors are known, and we do not know how many
there are in total. So while we know that there exists a cubic time algorithm to test
membership for minor-closed families, we have no idea what such an algorithm looks like
in general.

Graph families other than planar graphs for which the forbidden minors are known
include forests (K3) and outerplanar graphs (K2,3 and K4). A graph is outerplanar if it
admits a plane drawing such that all vertices appear on the outer face (Figure 2.6).

Exercise 2.12 (a) Give an example of a 6-connected planar graph or argue that no
such graph exists.

1Strictly speaking, it is more than just a special instance because it also specifies the forbidden minors
explicitly.

21

Chapter 2. Plane Embeddings Geometry: C&A 2014

Figure 2.6: An outerplanar graph (left) and a plane drawing of it in which all vertices
are incident to the outer face (right).

(b) Give an example of a 5-connected planar graph or argue that no such graph
exists.

(c) Give an example of a 3-connected outerplanar graph or argue that no such
graph exists.

Planarity testing. For planar graphs we do not have to contend ourselves with a cubic-
time algorithm, as there are several approaches to solve the problem in linear time. In
fact, there is quite a number of papers that describe different linear time algorithms, all
of which—from a very high-level point of view—can be regarded as an annotated depth-
first-search. The first such algorithm was described by Hopcroft and Tarjan [9], while
the current state-of-the-art [23] is probably among the “path searching” method by Boyer
and Myrwold [2] and the “LR-partition” method by de Fraysseix et al [6]. Although the
overall idea in all these approaches is easy to convey, there are many technical details,
which make a in-depth discussion rather painful to go through.

2.2 Graph representations

There are two standard representations for an abstract graph G = (V,E) on n = |V |
vertices. For the adjacency matrix representation we consider the vertices to be ordered
as V = {v1, . . . , vn}. The adjacency matrix of an undirected graph is a symmetric n×n-
matrix A = (aij)1�i,j�n where aij = aji = 1, if {i, j} ∈ E, and aij = aji = 0, otherwise.
Storing such a matrix explicitly requires Ω(n2) space, and allows to test in constant time
whether or not two given vertices are adjacent.

In an adjacency list representation, we store for each vertex a list of its neighbors in
G. This requires only O(n+ |E|) storage, which is better than for the adjacency matrix in
case that |E| = o(n2). On the other hand, the adjacency test for two given vertices is not
a constant-time operation, because it requires a search in one of the lists. Depending on
the representation of these lists, such a search takes O(d) time (unsorted list) or O(logd)
time (sorted random-access representation, such as a balanced search tree), where d is
the minimum degree of the two vertices.

Both representations have their merits. The choice of which one to use (if any)
typically depends on what one wants to do with the graph. When dealing with embedded
graphs, however, additional information concerning the embedding is needed beyond

22

Geometry: C&A 2014 2.2. Graph representations

the pure incidence structure of the graph. The next section discusses a standard data
structure to represent embedded graphs.

2.2.1 The Doubly-Connected Edge List

The doubly-connected edge list (DCEL) is a data structure to represent a plane graph
in such a way that it is easy to traverse and to manipulate. In order to avoid unnecessary
complications, let us discuss only connected graphs here that contain at least two vertices.
It is not hard to extend the data structure to cover all plane graphs. For simplicity we
also assume that we deal with a straight-line embedding and so the geometry of edges
is defined by the mapping of their endpoints already. For more general embeddings, the
geometric description of edges has to be stored in addition.

The main building block of a DCEL is a list of halfedges. Every actual edge is
represented by two halfedges going in opposite direction, and these are called twins, see
Figure 2.7. Along the boundary of each face, halfedges are oriented counterclockwise.

h

next(h)

prev(h)

twin(h)

target(h)

face(h)

Figure 2.7: A halfedge in a DCEL.

A DCEL stores a list of halfedges, a list of vertices, and a list of faces. These lists are
unordered but interconnected by various pointers. A vertex v stores a pointer halfedge(v)
to an arbitrary halfedge originating from v. Every vertex also knows its coordinates, that
is, the point point(v) it is mapped to in the represented embedding. A face f stores a
pointer halfedge(f) to an arbitrary halfedge within the face. A halfedge h stores five
pointers:

a pointer target(h) to its target vertex,

a pointer face(h) to the incident face,

a pointer twin(h) to its twin halfedge,

a pointer next(h) to the halfedge following h along the boundary of face(h), and

23

Chapter 2. Plane Embeddings Geometry: C&A 2014

a pointer prev(h) to the halfedge preceding h along the boundary of face(h).

A constant amount of information is stored for every vertex, (half-)edge, and face of the
graph. Therefore the whole DCEL needs storage proportional to |V |+ |E|+ |F|, which is
O(n) for a plane graph with n vertices by Corollary 2.5.

This information is sufficient for most tasks. For example, traversing all edges around
a face f can be done as follows:

s ← halfedge(f)
h ← s
do

something with h
h ← next(h)

while h �= s

Exercise 2.13 Give pseudocode to traverse all edges incident to a given vertex v of a
DCEL.

Exercise 2.14 Why is the previous halfedge prev(·) stored explicitly and the source
vertex of a halfedge is not?

2.2.2 Manipulating a DCEL
In many applications, plane graphs appear not just as static objects but rather they
evolve over the course of an algorithm. Therefore the data structure used to represent
the graph must allow for efficient update operations to change it.

First of all, we need to be able to generate new vertices, edges, and faces, to be added
to the corresponding list within the DCEL and—symmetrically—the ability to delete an
existing entity. Then it should be easy to add a new vertex v to the graph within some
face f. As we maintain a connected graph, we better link the new vertex to somewhere,
say, to an existing vertex u. For such a connection to be possible, we require that the
open line segment uv lies completely in f.

Of course, two halfedges are to be added connecting u and v. But where exactly?
Given that from a vertex and from a face only some arbitrary halfedge is directly accessi-
ble, it turns out convenient to use a halfedge in the interface. Let h denote the halfedge
incident to f for which target(h) = u. Our operation then becomes (see also Figure 2.8)

add-vertex-at(v,h)
Precondition: the open line segment point(v)point(u), where u := target(h),

lies completely in f := face(h).
Postcondition: a new vertex v has been inserted into f, connected by an edge

to u.

and it can be realized by manipulating a constant number of pointers as follows.

24

Geometry: C&A 2014 2.2. Graph representations

u

v

h f

. . .

. . .
(a) before

u

v

h

f

h1

h2

. . .

. . .
(b) after

Figure 2.8: Add a new vertex connected to an existing vertex u.

add-vertex-at(v,h) {
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(v) ← h2
twin(h1) ← h2
twin(h2) ← h1
target(h1) ← v
target(h2) ← u
face(h1) ← f
face(h2) ← f
next(h1) ← h2
next(h2) ← next(h)
prev(h1) ← h
prev(h2) ← h1
next(h) ← h1
prev(next(h2)) ← h2

}

Similarly, it should be possible to add an edge between two existing vertices u and v,
provided the open line segment uv lies completely within a face f of the graph, see
Figure 2.9. Since such an edge insertion splits f into two faces, the operation is called
split-face. Again we use the halfedge h that is incident to f and for which target(h) = u.
Our operation becomes then

split-face(h, v)
Precondition: v is incident to f := face(h) but not adjacent to u := target(h).

The open line segment point(v)point(u) lies completely in f.
Postcondition: f has been split by a new edge uv.

The implementation is slightly more complicated compared to add-vertex-at above, be-
cause the face f is destroyed and so we have to update the face information of all incident
halfedges. In particular, this is not a constant time operation, but its time complexity
is proportional to the size of f.

25

Chapter 2. Plane Embeddings Geometry: C&A 2014

u

v

fh

(a) before

u

v

f1

h f2

h1

h2

(b) after

Figure 2.9: Split a face by an edge uv.

split-face(h, v) {
f1 ← a new face
f2 ← a new face
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(f1) ← h1
halfedge(f2) ← h2
twin(h1) ← h2
twin(h2) ← h1
target(h1) ← v
target(h2) ← u
next(h2) ← next(h)
prev(next(h2)) ← h2
prev(h1) ← h
next(h) ← h1
i ← h2
loop

face(i) ← f2
if target(i) = v break the loop
i ← next(i)

endloop
next(h1) ← next(i)
prev(next(h1)) ← h1
next(i) ← h2
prev(h2) ← i
i ← h1
do

face(i) ← f1
i ← next(i)

until target(i) = u

26

Geometry: C&A 2014 2.2. Graph representations

delete the face f
}

In a similar fashion one can realize the inverse operation join-face(h) that removes the
edge (represented by the halfedge) h, thereby joining the faces face(h) and face(twin(h)).

It is easy to see that every connected plane graph on at least two vertices can be
constructed using the operations add-vertex-at and split-face, starting from an embedding
of K2 (two vertices connected by an edge).

Exercise 2.15 Give pseudocode for the operation join-face(h). Also specify precondi-
tions, if needed.

Exercise 2.16 Give pseudocode for the operation split-edge(h), that splits the edge (rep-
resented by the halfedge) h into two by a new vertex w, see Figure 2.10.

u

v

h
f2

f1

(a) before

u

v

w

h2

h1

k1

k2
f2

f1

(b) after

Figure 2.10: Split an edge by a new vertex.

2.2.3 Graphs with unbounded edges
In some cases it is convenient to consider plane graphs, in which some edges are not
mapped to a line segment but to an unbounded curve, such as a ray. This setting is not
really much different from the one we studied before, except that one vertex is placed “at
infinity”. One way to think of it is in terms of stereographic projection (see the proof of
Theorem 2.2). The further away a point in R2 is from the origin, the closer its image on
the sphere S gets to the north pole n of S. But there is no way to reach n except in the
limit. Therefore, we can imagine drawing the graph on S instead of in R2 and putting
the “infinite vertex” at n.

All this is just for the sake of a proper geometric interpretation. As far as a DCEL
representation of such a graph is concerned, there is no need to consider spheres or, in
fact, anything beyond what we have discussed before. The only difference to the case
with all finite edges is that there is this special infinite vertex, which does not have any
point/coordinates associated to it. But other than that, the infinite vertex is treated
in exactly the same way as the finite vertices: it has in– and outgoing halfedges along
which the unbounded faces can be traversed (Figure 2.11).

27

Chapter 2. Plane Embeddings Geometry: C&A 2014

∞

Figure 2.11: A DCEL with unbounded edges. Usually, we will not show the infi-
nite vertex and draw all edges as straight-line segments. This yields a
geometric drawing, like the one within the gray box.

Remarks. It is actually not so easy to point exactly to where the DCEL data struc-
ture originates from. Often Muller and Preparata [15] are credited, but while they use
the term DCEL, the data structure they describe is different from what we discussed
above and from what people usually consider a DCEL nowadays. Overall, there are a
large number of variants of this data structure, which appear under the names winged
edge data structure [1], halfedge data structure [21], or quad-edge data structure [8].
Kettner [11] provides a comparison of all these and some additional references.

2.2.4 Combinatorial embeddings

The DCEL data structure discussed in the previous section provides a fully fleshed-out
representation of what is called a combinatorial embedding. From a mathematical point
of view this can be regarded an equivalence relation on embeddings: Two embeddings are
equivalent if their face boundaries—regarded as circular sequences of edges (or vertices)
in counterclockwise order—are the same (as sets) up to a global change of orientation
(reversing the order of all sequences simultaneously). For instance, the faces of the plane
graphs shown in Figure 2.12a are (described as a list of vertices)

(a) : {(1, 2, 3), (1, 3, 6, 4, 5, 4), (1, 4, 6, 3, 2)} ,
(b) : {(1, 2, 3, 6, 4, 5, 4), (1, 3, 2), (1, 4, 6, 3)} , and
(c) : {(1, 4, 5, 4, 6, 3), (1, 3, 2), (1, 2, 3, 6, 4)} .

28

Geometry: C&A 2014 2.3. Unique embeddings

Note that a vertex can appear several times along the boundary of a face (if it is a
cut-vertex). Clearly (b) is not equivalent to (a) nor (c), because it is the only graph
that contains a face bounded by seven vertices. However, (a) and (c) turn out to be
equivalent: after reverting orientations f1 takes the role of h2, f2 takes the role of h1,
and f3 takes the role of h3.

1

2

3

4

5
6f1 f2

f3

(a)

1

2

3

4

5
6

g2

g1

g3

(b)

1

2

3

4

6 5

h2

h1

h3

(c)

Figure 2.12: Equivalent embeddings?

In a dual interpretation one can just as well define equivalence in terms of the cyclic
order of neighbors around all vertices. In this form, a compact way to describe a com-
binatorial embedding is as a so-called rotation system that consists of a permutation π
and an involution ρ, both of which are defined on the set of halfedges (in this context
often called darts or flags) of the embedding. The orbits of π correspond to the vertices,
as they iterate over the incident halfedges. The involution ρ maps each halfedge to its
twin.

Many people prefer this dual view, because one does not have to discuss the issue
of vertices or edges that appear several times on the boundary of a face. The following
lemma shows that such an issue does not arise when dealing with biconnected graphs.

Lemma 2.17 In a biconnected plane graph every face is bounded by a cycle.

We leave the proof as an exercise. Intuitively the statement is probably clear. But
we believe it is instructive to think about how to make a formal argument. An easy
consequence is the following corollary, whose proof we also leave as an exercise.

Corollary 2.18 In a 3-connected plane graph the neighbors of a vertex lie on a cycle.

Note that the statement does not read “form a cycle” but rather “lie on a cycle”.

Exercise 2.19 Prove Lemma 2.17 and Corollary 2.18.

2.3 Unique embeddings

We have seen in Lemma 2.17 that all faces in biconnected plane graphs are bounded by
cycles. Conversely one might wonder which cycles of a planar graph G bound a face in
some plane embedding of G. Such a cycle is called a facial cycle (Figure 2.13).

29

Chapter 2. Plane Embeddings Geometry: C&A 2014

1

2

3

4

5

Figure 2.13: The cycle (1, 2, 3) is facial and we can show that (2, 3, 4) is not.

In fact, we will look at a slightly different class of cycles, namely those that bound a
face in every plane embedding of G. The lemma below provides a complete character-
ization of those cycles. In order to state it, let us introduce a bit more terminology. A
chord of a cycle C in a graph G is an edge that connects two vertices of C but is not an
edge of C. A cycle C in a graph G is an induced cycle, if C = G[V(C)], that is, C does
not have any chord in G.

Lemma 2.20 Let C be a cycle in a planar graph G such that G �= C and G is not C
plus a single chord of C. Then C bounds a face in every plane embedding of G if
and only if C is an induced cycle and it is not separating (i.e., G \C is connected).

Proof. “⇐”: Consider any plane embedding Γ of G. As G \ C is connected, by the
Jordan Curve Theorem it is contained either in the interior of C or in the exterior of C
in Γ . In either case, the other component of the plane is bounded by C, because there
are no edges among the vertices of C.

“⇒": Using contraposition, suppose that C is not induced or G \ C is disconnected.
We have to show that there exists a plane embedding of G in which C does not bound
a face.

If C is not induced, then there is a chord c of C in G. As G �= C ∪ c, either G has a
vertex v that is not in C or G contains another chord d �= c of C. In either case, consider
any plane embedding Γ of G in which C bounds a face. (If such an embedding does not
exist, there is nothing to show.) We can modify Γ by drawing the chord c in the face
bounded by C to obtain an embedding Γ � of G in which C does not bound a face: one of
the two regions bounded by C according to the Jordan Curve Theorem contains c and
the other contains either the vertex v or the other chord d.

If G \C contains two components A and B, then consider a plane embedding Γ of G.
If C is not a face in Γ , there is nothing to show. Hence suppose that C is a face of Γ
(Figure 2.14a). From Γ we obtain induced plane embeddings ΓA of G \ B = A ∪ C and
ΓB of G \A = B ∪ C. Using Theorem 2.2 we may suppose that C bounds the outer face
in ΓA and it does not bound the outer face in ΓB. Then we can glue both embeddings at
C, that is, extend ΓB to an embedding of G by adding ΓA within the face bounded by C
(Figure 2.14b). The resulting embedding is a plane drawing of G in which C does not
bound a face.

30

Geometry: C&A 2014 2.3. Unique embeddings

C

A

B

(a)

C

B
A

(b)

Figure 2.14: Construct a plane embedding of G in which C does not bound a face.

Finally, consider the case that G \ C = ∅ (which is not a connected graph according
to our definition). As we considered above the case that C is not an induced cycle, the
only remaining case is G = C, which is excluded explicitly.

For both special cases for G that are excluded in Lemma 2.20 it is easy to see that all
cycles in G bound a face in every plane embedding. This completes the characterization.
Also observe that in these special cases G is not 3-connected.

Corollary 2.21 A cycle C of a 3-connected planar graph G bounds a face in every plane
embedding of G if and only if C is an induced cycle and it is not separating.

The following theorem tells us that for a wide range of graphs we have little choice
as far as a plane embedding is concerned, at least from a combinatorial point of view.
Geometrically, there is still a lot of freedom, though.

Theorem 2.22 (Whitney [22]) A 3-connected planar graph has a unique combinatorial
plane embedding (up to equivalence).

Proof. Let G be a 3-connected planar graph and suppose there exist two embeddings Φ1
and Φ2 of G that are not equivalent. That is, there is a cycle C = (v1, . . . , vk), k � 3, in
G that bounds a face in, say, Φ1 but C does not bound a face in Φ2. By Corollary 2.21
such a cycle has a chord or it is separating. We consider both options.

Case 1: C has a chord {vi, vj}, with j � i + 2. Denote A = {vx | i < x < j} and
B = {vx | x < i∨ j < x} and observe that both A and B are non-empty (because {vi, vj} is
a chord and so vi and vj are not adjacent in C). Given that G is 3-connected, there is at
least one path P from A to B that does not use either of vi or vj. Let a denote the last
vertex of P that is in A, and let b denote the first vertex of B that is in b. As C bounds
a face f in Φ1, we can add a new vertex v inside the face bounded by C and connect v by
four pairwise internally disjoint curves to each of vi, vj, a, and b. The result is a plane
graph G � ⊃ G that contains a subdivision of K5 with branch vertices v, vi, vj, a, and b.
By Kuratowski’s Theorem (Theorem 2.9) this contradicts the planarity of G �.

Case 2: C is separating and, therefore, G \ C contains two distinct components A
and B. (We have G �= C because G is 3-connected.) Consider now the embedding Φ1

31

