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5.4 Correctness of the Lawson Flip Algorithm

It remains to show that the triangulation of P that we get upon termination of the
Lawson �ip algorithm is indeed a Delaunay triangulation. Here is a �rst observation
telling us that the triangulation is �locally Delaunay�.

Observation 5.12 Let ∆,∆ ′ be two adjacent triangles in the triangulation D that results
from the Lawson �ip algorithm. Then the circumcircle of ∆ does not have any
vertex of ∆ ′ in its interior, and vice versa.

If the two triangles together form a convex quadrilateral, this follows from the fact
that the Lawson �ip algorithm did not �ip the common edge of ∆ and ∆ ′. If the four
vertices are not in convex position, this is basic geometry: given a triangle ∆, its cir-
cumcircle C can only contains points of C \∆ that form a convex quadrilateral with the
vertices of ∆.

Now we show that the triangulation is also �globally Delaunay�.

Proposition 5.13 The triangulation D that results from the Lawson �ip algorithm is
a Delaunay triangulation.

Proof. Suppose for contradiction that there is some triangle ∆ ∈ D and some point
p ∈ P strictly inside the circumcircle C of ∆. Among all such pairs (∆,p), we choose one
for which we the distance of p to ∆ is minimal. Note that this distance is positive since
D is a triangulation of P. The situation is as depicted in Figure 5.10a.
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Figure 5.10: Correctness of the Lawson �ip algorithm.

Now consider the edge e of ∆ that is facing p. There must be another triangle ∆ ′ in
D that is incident to the edge e. By the local Delaunay property of D, the third vertex q
of ∆ ′ is on or outside of C, see Figure 5.10b. But then the circumcircle C ′ of ∆ ′ contains
the whole portion of C on p's side of e, hence it also contains p; moreover, p is closer to
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∆ ′ than to ∆ (Figure 5.10c). But this is a contradiction to our choice of ∆ and p. Hence
there was no (∆,p), and D is a Delaunay triangulation. �

Exercise 5.14 The Euclidean minimum spanning tree (EMST) of a �nite point set
P ⊂ R2 is a spanning tree for which the sum of the edge lengths is minimum
(among all spanning trees of P). Show:

a) Every EMST of P is a plane graph.

b) Every EMST of P contains a closest pair, i.e., an edge between two points
p,q ∈ P that have minimum distance to each other among all point pairs in

(
P
2

)
.

c) Every Delaunay Triangulation of P contains an EMST of P.

5.5 The Delaunay Graph

Despite the fact that a point set may have more than one Delaunay triangulation, there
are certain edges that are present in every Delaunay triangulation, for instance, the edges
of the convex hull.

De�nition 5.15 The Delaunay graph of P ⊆ R2 consists of all line segments pq, for
p,q ∈ P, that are contained in every Delaunay triangulation of P.

The following characterizes the edges of the Delaunay graph.

Lemma 5.16 The segment pq, for p,q ∈ P, is in the Delaunay graph of P if and only
if there exists a circle through p and q that has p and q on its boundary and all
other points of P are strictly outside.

Proof. �⇒�: Let pq be an edge in the Delaunay graph of P, and let D be a Delaunay
triangulation of P. Then there exists a triangle ∆ = pqr in D, whose circumcircle C does
not contain any point from P in its interior.

If there is a point s on ∂C such that rs intersects pq, then let ∆ ′ = pqt denote the
other (6= ∆) triangle in D that is incident to pq (Figure 5.11a). Flipping the edge pq
to rt yields another Delaunay triangulation of P that does not contain the edge pq, in
contradiction to pq being an edge in the Delaunay graph of P. Therefore, there is no
such point s.

Otherwise we can slightly change the circle C by moving away from r while keeping
p and q on the circle. As P is a �nite point set, we can do such a modi�cation without
catching another point from P with the circle. In this way we obtain a circle C ′ through
p and q such that all other points from P are strictly outside C ′ (Figure 5.12b).

�⇐�: Let D be a Delaunay triangulation of P. If pq is not an edge of D, there must
be another edge of D that crosses pq (otherwise, we could add pq to D and still have
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Figure 5.11: Characterization of edges in the Delaunay graph (I).

a plane graph, a contradiction to D being a triangulation of P). Let rs denote the �rst
edge of D that intersects the directed line segment pq.

Consider the triangle ∆ of D that is incident to rs on the side that faces p (given
that rs intersects pq this is a well de�ned direction). By the choice of rs neither of the
other two edges of ∆ intersects pq, and p /∈ ∆◦ because ∆ is part of a triangulation of P.
The only remaining option is that p is a vertex of ∆ = prs. As ∆ is part of a Delaunay
triangulation, its circumcircle C∆ is empty (i.e., C∆

◦ ∩ P = ∅).
Consider now a circle C through p and q, which exists by assumption. Fixing p and q,

expand C towards r to eventually obtain the circle C ′ through p, q, and r (Figure 5.12a).
Recall that r and s are on di�erent sides of the line through p and q. Therefore, s lies
strictly outside of C ′. Next �x p and r and expand C ′ towards s to eventually obtain the
circle C∆ through p, r, and s (Figure 5.12b). Recall that s and q are on the same side
of the line through p and r. Therefore, q ∈ C∆, which is in contradiction to C∆ being
empty. It follows that there is no Delaunay triangulation of P that does not contain the
edge pq. �

The Delaunay graph is useful to prove uniqueness of the Delaunay triangulation in
case of general position.

Corollary 5.17 Let P ⊂ R2 be a �nite set of points in general position, that is, no four
points of P are cocircular. Then P has a unique Delaunay triangulation. �

5.6 Every Delaunay Triangulation Maximizes the Smallest Angle

Why are we actually interested in Delaunay triangulations? After all, having empty
circumcircles is not a goal in itself. But it turns out that Delaunay triangulations satisfy
a number of interesting properties. Here we show just one of them.

Recall that when we compared a scan triangulation with a Delaunay triangulation of
the same point set in Figure 5.3, we claimed that the scan triangulation is �ugly� because
it contains many long and skinny triangles. The triangles of the Delaunay triangulation,
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Figure 5.12: Characterization of edges in the Delaunay graph (II).

at least in this example, look much nicer, that is, much closer to an equilateral triangle.
One way to quantify this �niceness� is to look at the angles that appear in a triangulation:
If all angles are large, then all triangles are reasonably close to an equilateral triangle.
Indeed, we will show that Delaunay triangulations maximize the smallest angle among
all triangulations of a given point set. Note that this does not imply that there are no
long and skinny triangles in a Delaunay triangulation. But if there is a long and skinny
triangle in a Delaunay triangulation, then there is an at least as long and skinny triangle
in every triangulation of the point set.

Given a triangulation T of P, consider the sorted sequence A(T) = (α1,α2, . . . ,α3m)

of interior angles, where m is the number of triangles (we have already remarked earlier
that m is a function of P only and does not depend on T). Being sorted means that
α1 6 α2 6 · · · 6 α3m. Let T,T ′ be two triangulations of P. We say that A(T) < A(T ′)
if there exists some i for which αi < α ′i and αj = α ′j, for all j < i. (This is nothing but
the lexicographic order on these sequences.)

Theorem 5.18 Let P ⊆ R2 be a �nite set of points in general position (not all collinear
and no four cocircular). Let D∗ be the unique Delaunay triangulation of P, and let
T be any triangulation of P. Then A(T) 6 A(D∗).

In particular, D∗ maximizes the smallest angle among all triangulations of P.
Proof. We know that T can be transformed into D∗ through the Lawson �ip algorithm,
and we are done if we can show that each such �ip lexicographically increases the sorted
angle sequence. A �ip replaces six interior angles by six other interior angles, and we
will actually show that the smallest of the six angles strictly increases under the �ip.
This implies that the whole angle sequence increases lexicographically.

Let us �rst look at the situation of four cocircular points, see Figure 5.13a. In this
situation, the inscribed angle theorem (a generalization of Thales' Theorem, stated
below as Theorem 5.19) tells us that the eight depicted angles come in four equal pairs.
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Figure 5.13: Angle-optimality of Delaunay triangulations.

For instance, the angles labeled α1 at s and r are angles on the same side of the chord
pq of the circle.

In Figure 5.13b, we have the situation in which we perform a Lawson �ip (replacing
the solid with the dashed diagonal). By the symbol α (α, respectively) we denote an
angle strictly smaller (larger, respectively) than α. Here are the six angles before the
�ip:

α1 + α2, α3, α4, α1, α2, α3 + α4.

After the �ip, we have

α1, α2, α3, α4, α1 + α4, α2 + α3.

Now, for every angle after the �ip there is at least one smaller angle before the �ip:

α1 > α1,

α2 > α2,

α3 > α3,

α4 > α4,

α1 + α4 > α4,

α2 + α3 > α3.

It follows that the smallest angle strictly increases. �

Theorem 5.19 (Inscribed Angle Theorem) Let C be a circle with center c and positive
radius and p,q ∈ C. Then the angle \prqmodπ = 1

2
\pcq is the same, for all r ∈ C.
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Figure 5.14: The Inscribed Angle Theorem with θ := \prq.

Proof. Without loss of generality we may assume that c is located to the left of or on
the oriented line pq.

Consider �rst the case that the triangle ∆ = pqr

contains c. Then ∆ can be partitioned into three trian-
gles: pcr, qcr, and cpq. All three triangles are isosce-
les, because two sides of each form the radius of C. De-
note α = \prc, β = \crq, γ = \cpq, and δ = \pcq

(see the �gure shown to the right). The angles we are
interested in are θ = \prq = α + β and δ, for which
we have to show that δ = 2θ.

Indeed, the angle sum in ∆ is π = 2(α + β + γ)

and the angle sum in the triangle cpq is π = δ + 2γ.
Combining both yields δ = 2(α+ β) = 2θ.
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Next suppose that pqcr are in convex position and
r is to the left of or on the oriented line pq. Without
loss of generality let r be to the left of or on the oriented
line qc. (The case that r lies to the right of or on the
oriented line pc is symmetric.) De�ne α, β, γ, δ as
above and observe that θ = α−β. Again have to show
that δ = 2θ.

The angle sum in the triangle cpq is π = δ + 2γ
and the angle sum in the triangle rpq is π = (α−β) +

α+γ+(γ−β) = 2(α+γ−β). Combining both yields
δ = π− 2γ = 2(α− β) = 2θ. p
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It remains to consider the case that r is to the right of the
oriented line pq.

Consider the point r ′ that is antipodal to r on C, and the
quadrilateral Q = prqr ′. We are interested in the angle φ of
Q at r. By Thales' Theorem the inner angles of Q at p and q
are both π/2. Hence the angle sum of Q is 2π = θ+φ+2π/2
and so φ = π− θ.
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What happens in the case where the Delaunay triangulation is not unique? The
following still holds.

Theorem 5.20 Let P ⊆ R2 be a �nite set of points, not all on a line. Every Delaunay
triangulation D of P maximizes the smallest angle among all triangulations T of P.

Proof. Let D be some Delaunay triangulation of P. We in�nitesimally perturb the points
in P such that no four are on a common circle anymore. Then the Delaunay triangulation
becomes unique (Corollary 5.17). Starting from D, we keep applying Lawson �ips until
we reach the unique Delaunay triangulation D∗ of the perturbed point set. Now we
examine this sequence of �ips on the original unperturbed point set. All these �ips must
involve four cocircular points (only in the cocircular case, an in�nitesimal perturbation
can change �good� edges into �bad� edges that still need to be �ipped). But as Figure 5.13
(a) easily implies, such a �degenerate� �ip does not change the smallest of the six involved
angles. It follows that D and D∗ have the same smallest angle, and since D∗ maximizes
the smallest angle among all triangulations T (Theorem 5.18), so does D. �

5.7 Constrained Triangulations

Sometimes one would like to have a Delaunay triangulation, but certain edges are already
prescribed, for example, a Delaunay triangulation of a simple polygon. Of course, one
cannot expect to be able to get a proper Delaunay triangulation where all triangles satisfy
the empty circle property. But it is possible to obtain some triangulation that comes as
close as possible to a proper Delaunay triangulation, given that we are forced to include
the edges in E. Such a triangulation is called a constrained Delaunay triangulation, a
formal de�nition of which follows.

Let P ⊆ R2 be a �nite point set and G = (P,E) a geometric graph with vertex set
P (we consider the edges e ∈ E as line segments). A triangulation T of P respects G if
it contains all segments e ∈ E. A triangulation T of P that respects G is said to be a
constrained Delaunay triangulation of P with respect to G if the following holds for
every triangle ∆ of T:
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The circumcircle of ∆ contains only points q ∈ P in its interior that are not
visible from the interior of ∆. A point q ∈ P is visible from the interior of
∆ if there exists a point p in the interior of ∆ such that the line segment pq
does not intersect any segment e ∈ E. We can thus imagine the line segments
of E as �blocking the view�.

For illustration, consider the simple polygon and its constrained Delaunay triangula-
tion shown in Figure 5.15. The circumcircle of the shaded triangle ∆ contains a whole
other triangle in its interior. But these points cannot be seen from ∆◦, because all
possible connecting line segments intersect the blocking polygon edge e of ∆.

∆

e

Figure 5.15: Constrained Delaunay triangulation of a simple polygon.

Theorem 5.21 For every �nite point set P and every plane graph G = (P,E), there
exists a constrained Delaunay triangulation of P with respect to G.

Exercise 5.22 Prove Theorem 5.21. Also describe a polynomial algorithm to construct
such a triangulation.

Questions

18. What is a triangulation? Provide the de�nition and prove a basic property: every
triangulation with the same set of vertices and the same outer face has the same
number of triangles.

19. What is a triangulation of a point set? Give a precise de�nition.
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20. Does every point set (not all points on a common line) have a triangulation?
You may, for example, argue with the scan triangulation.

21. What is a Delaunay triangulation of a set of points? Give a precise de�nition.

22. What is the Delaunay graph of a point set? Give a precise de�nition and a
characterization.

23. How can you prove that every set of points (not all on a common line) has a
Delaunay triangulation? You can for example sketch the Lawson �ip algorithm
and the Lifting Map, and use these to show the existence.

24. When is the Delaunay triangulation of a point set unique? Show that general
position is a su�cient condition. Is it also necessary?

25. What can you say about the �quality� of a Delaunay triangulation? Prove
that every Delaunay triangulation maximizes the smallest interior angle in the
triangulation, among the set of all triangulations of the same point set.
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