
Chapter 6

Delaunay Triangulation: Incremental

Construction

In the last lecture, we have learned about the Lawson �ip algorithm that computes a
Delaunay triangulation of a given n-point set P ⊆ R2 with O(n2) Lawson �ips. One can
actually implement this algorithm to run in O(n2) time, and there are point sets where
it may take Ω(n2) �ips.

In this lecture, we will discuss a di�erent algorithm. The �nal goal is to show that
this algorithm can be implemented to run in O(n logn) time; this lecture, however, is
concerned only with the correctness of the algorithm. Throughout the lecture we assume
that P is in general position (no 3 points on a line, no 4 points on a common circle), so
that the Delaunay triangulation is unique (Corollary 5.17). There are techniques to deal
with non-general position, but we don't discuss them here.

6.1 Incremental construction

The idea is to build the Delaunay triangulation of P by inserting one point after another.
We always maintain the Delaunay triangulation of the point set R inserted so far, and
when the next point s comes along, we simply update the triangulation to the Delaunay
triangulation of R ∪ {s}. Let DT(R) denote the Delaunay triangulation of R ⊆ P.

To avoid special cases, we enhance the point set P with three arti�cial points �far
out�. The convex hull of the resulting point set is a triangle; later, we can simply remove
the extra points and their incident edges to obtain DT(P). The incremental algorithm
starts o� with the Delaunay triangulation of the three arti�cial points which consists
of one big triangle enclosing all other points. (In our �gures, we suppress the far-away
points, since they are merely a technicality.)

Now assume that we have already built DT(R), and we next insert s ∈ P \ R. Here is
the outline of the update step.

1. Find the triangle ∆ = ∆(p,q, r) of DT(R) that contains s, and replace it with the
three triangles resulting from connecting s with all three vertices p,q, r; see Figure

95



Chapter 6. Delaunay Triangulation: Incremental ConstructionGeometry: C&A 2014

s

∆

Figure 6.1: Inserting s into DT(R): Step 1

6.1. We now have a triangulation T of R ∪ {s}.

2. Perform Lawson �ips on T until DT(R ∪ {s}) is obtained; see Figure 6.2

s

∆

s

∆

s

∆

s

∆

Figure 6.2: Inserting s into DT(R): Step 2

How to organize the Lawson �ips. The Lawson �ips can be organized quite systematically,
since we always know the candidates for �bad� edges that may still have to be �ipped.
Initially (after step 1), only the three edges of ∆ can be bad, since these are the only
edges for which an incident triangle has changed (by inserting s in Step 1). Each of
the three new edges is good, since the 4 vertices of its two incident triangles are not in
convex position.

Now we have the following invariant (part (a) certainly holds in the �rst �ip):

96



Geometry: C&A 2014 6.1. Incremental construction

(a) In every �ip, the convex quadrilateral Q in which the �ip happens has exactly two
edges incident to s, and the �ip generates a new edge incident to s.

(b) Only the two edges of Q that are not incident to s can become bad through the
�ip.

We will prove part (b) in the next lemma. The invariant then follows since (b) entails
(a) in the next �ip. This means that we can maintain a queue of potentially bad edges
that we process in turn. A good edge will simply be removed from the queue, and a bad
edge will be �ipped and replaced according to (b) with two new edges in the queue. In
this way, we never �ip edges incident to s; the next lemma proves that this is correct
and at the same time establishes part (b) of the invariant.

Lemma 6.1 Every edge incident to s that is created during the update is an edge of
the Delaunay graph of R∪ {s} and thus an edge that will be in DT(R∪ {s}). It easily
follows that edges incident to s will never become bad during the update step.1

Proof. Let us consider one of the �rst three new edges, sp, say. Since the triangle
∆ has a circumcircle C strictly containing only s (∆ is in DT(R)), we can shrink that
circumcircle to a circle C ′ through s and p with no interior points, see Figure 6.3 (a).
This proves that sp is in the Delaunay graph. If st is an edge created by a �ip, a similar
argument works. The �ip destroys exactly one triangle ∆ of DT(R). Its circumcircle C
contains s only, and shrinking it yields an empty circle C ′ through s and t. Thus, st is
in the Delaunay graph also in this case. �

C

C’

r

p

q
s

∆

(a) New edge sp incident
to s created in Step 1

C

s

C’ ∆

t

(b) New edge st incident
to s created in Step 2

Figure 6.3: Newly created edges incident to s are in the Delaunay graph

1If such an edge was bad, it could be �ipped, but then it would be �gone forever� according to the
lifting map interpretation from the previous lecture.

97



Chapter 6. Delaunay Triangulation: Incremental ConstructionGeometry: C&A 2014

s

∆

s

∆

s s s

Figure 6.4: The history graph: one triangle gets replaced by three triangles

6.2 The History Graph

What can we say about the performance of the incremental construction? Not much yet.
First of all, we did not specify how we �nd the triangle ∆ of DT(R) that contains the
point s to be inserted. Doing this in the obvious way (checking all triangles) is not good,
since already the �nd steps would then amount to O(n2) work throughout the whole
algorithm. Here is a smarter method, based on the history graph.

De�nition 6.2 Given R ⊆ P (regarded as a sequence that re�ects the insertion order),
the history graph of R is a directed acyclic graph whose vertices are all triangles
that have ever been created during the incremental construction of DT(R). There
is a directed edge from ∆ to ∆ ′ whenever ∆ has been destroyed during an insertion
step, ∆ ′ has been created during the same insertion step, and ∆ overlaps with ∆ ′

in its interior.

It follows that the history graph contains triangles of outdegrees 3, 2 and 0. The ones of
outdegree 0 are clearly the triangles of DT(R).

The triangles of outdegree 3 are the ones that have been destroyed during Step 1 of
an insertion. For each such triangle ∆, its three outneighbors are the three new triangles
that have replaced it, see Figure 6.4.

The triangles of outdegree 2 are the ones that have been destroyed during Step 2 of
an insertion. For each such triangle ∆, its two outneighbors are the two new triangles
created during the �ip that has destroyed ∆, see Figure 6.5.

The history graph can be built during the incremental construction at asymptotically
no extra cost; but it may need extra space since it keeps all triangles ever created. Given
the history graph, we can search for the triangle ∆ of DT(R) that contains s, as follows.
We start from the big triangle spanned by the three far-away points; this one certainly

98



Geometry: C&A 2014 6.3. The structural change

s

s

s s

Figure 6.5: The history graph: two triangles get replaced by two triangles

contains s. Then we follow a directed path in the history graph. If the current triangle
still has outneighbors, we �nd the unique outneighbor containing s and continue the
search with this neighbor. If the current triangle has no outneighbors anymore, it is in
DT(R) and contains s�we are done.

Types of triangles in the history graph. After each insertion of a point s, several triangles are
created and added to the history graph. It is important to note that these triangles come
in two types: Some of them are valid Delaunay triangles of R∪{s}, and they survive to the
next stage of the incremental construction. Other triangles are immediately destroyed
by subsequent Lawson �ips, because they are not Delaunay triangles of R ∪ {s}. These
�ephemeral" triangles will give us some headache (though not much) in the algorithm's
analysis in the next chapter.

Note that, whenever a Lawson �ip is performed, of the two triangles destroyed one
of them is always a �valid" triangle from a previous iteration, and the other one is an
�ephemeral" triangle that was created at this iteration. The ephemeral triangle is always
the one that has s, the newly inserted point, as a vertex.

6.3 The structural change

Concerning the actual update (Steps 1 and 2), we can make the following

Observation 6.3 Given DT(R) and the triangle ∆ of DT(R) that contains s, we can
build DT(R∪ {s}) in time proportional to the degree of s in DT(R∪ {s}), which is the
number of triangles of DT(R ∪ {s}) containing s.

Indeed, since every �ip generates exactly one new triangle incident to s, the number
of �ips is the degree of s minus three. Step 1 of the update takes constant time, and

99



Chapter 6. Delaunay Triangulation: Incremental ConstructionGeometry: C&A 2014

since also every �ip can be implemented in constant time, the observation follows.
In the next lecture, we will show that a clever insertion order guarantees that the

search paths traversed in the history graph are short, and that the structural change (the
number of new triangles) is small. This will then give us the O(n logn) algorithm.

Exercise 6.4 For a sequence of n pairwise distinct numbers y1, . . . ,yn consider the se-
quence of pairs (min{y1, . . . ,yi},max{y1, . . . ,yi})i=0,1,...,n (min ∅ := +∞,max ∅ := −∞).
How often do these pairs change in expectation if the sequence is permuted ran-
domly, each permutation appearing with the same probability? Determine the ex-
pected value.

Questions

26. Describe the algorithm for the incremental construction of DT(P): how do we
�nd the triangle containing the point s to be inserted into DT(R)? How do we
transform DT(R) into DT(R∪ {s})? How many steps does the latter transformation
take, in terms of DT(R ∪ {s})?

27. What are the two types of triangles that the history graph contains?

100


