
Chapter 7

The Con�guration Space Framework

In Section 6.1, we have discussed the incremental construction of the Delaunay trian-
gulation of a �nite point set. In this lecture, we want to analyze the runtime of this
algorithm if the insertion order is chosen uniformly at random among all insertion or-
ders. We will do the analysis not directly for the problem of constructing the Delaunay
triangulation but in a somewhat more abstract framework, with the goal of reusing the
analysis for other problems.

Throughout this lecture, we again assume general position: no three points on a line,
no four on a circle.

7.1 The Delaunay triangulation � an abstract view

The incremental construction constructs and destroys triangles. In this section, we want
to take a closer look at these triangles, and we want to understand exactly when a triangle
is �there�.

Lemma 7.1 Given three points p,q, r ∈ R, the triangle ∆(p,q, r) with vertices p,q, r
is a triangle of DT(R) if and only if the circumcircle of ∆(p,q, r) is empty of points
from R.

Proof. The �only if� direction follows from the de�nition of a Delaunay triangulation
(De�nition 5.8). The �if� direction is a consequence of general position and Lemma 5.16:
if the circumcircle C of ∆(p,q, r) is empty of points from R, then all the three edges
pq,qr,pr are easily seen to be in the Delaunay graph of R. C being empty also implies
that the triangle ∆(p,q, r) is empty, and hence it forms a triangle of DT(R). �

Next we develop a somewhat more abstract view of DT(R).

De�nition 7.2

(i) For all p,q, r ∈ P, the triangle ∆ = ∆(p,q, r) is called a con�guration. The
points p,q and r are called the de�ning elements of ∆.
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(ii) A con�guration ∆ is in con�ict with a point s ∈ P if s is strictly inside the
circumcircle of ∆. In this case, the pair (∆, s) is called a con�ict.

(iii) A con�guration ∆ is called active w.r.t. R ⊆ P if (a) the de�ning elements of
∆ are in R, and (b) if ∆ is not in con�ict with any element of R.

According to this de�nition and Lemma 7.1, DT(R) consists of exactly the con�gu-
rations that are active w.r.t. R. Moreover, if we consider DT(R) and DT(R ∪ {s}) as sets
of con�gurations, we can exactly say how these two sets di�er.

There are the con�gurations in DT(R) that are not in con�ict with s. These con�g-
urations are still in DT(R ∪ {s}). The con�gurations of DT(R) that are in con�ict with
s will be removed when going from R to R ∪ {s}. Finally, DT(R ∪ {s}) contains some new
con�gurations, all of which must have s in their de�ning set. According to Lemma 7.1,
it cannot happen that we get a new con�guration without s in its de�ning set, as such
a con�guration would have been present in DT(R) already.

7.2 Con�guration Spaces

Here is the abstract framework that generalizes the previous con�guration view of the
Delaunay triangulation.

De�nition 7.3 Let X (the ground set) and Π (the set of con�gurations) be �nite sets.
Furthermore, let

D : Π→ 2X

be a function that assigns to every con�guration ∆ a set of de�ning elements D(∆).
We assume that only a constant number of con�gurations have the same de�ning
elements. Let

K : Π→ 2X

be a function that assigns to every con�guration ∆ a set of elements in con�ict with
∆ (the �killer� elements). We stipulate that D(∆) ∩ K(∆) = ∅ for all ∆ ∈ Π.

Then the quadruple S = (X,Π,D,K) is called a con�guration space. The number

d = d(S) := max
∆∈Π

|D(∆)|

is called the dimension of S.
Given R ⊆ X, a con�guration ∆ is called active w.r.t. R if

D(∆) ⊆ R and K(∆) ∩ R = ∅,
i.e. if all de�ning elements are in R but no element of R is in con�ict with ∆. The
set of active con�gurations w.r.t. R is denoted by TS(R), where we drop the subscript
if the con�guration space is clear from the context.
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In case of the Delaunay triangulation, we set X = P (the input point set). Π consists
of all triangles ∆ = ∆(p,q, r) spanned by three points p,q, r ∈ X∪ {a,b, c}, where a,b, c
are the three arti�cial far-away points. We set D(∆) := {p,q, r}∩X. The set K(∆) consists
of all points strictly inside the circumcircle of ∆. The resulting con�guration space has
dimension 3, and the technical condition that only a constant number of con�gurations
share the de�ning set is satis�ed as well. In fact, every set of three points de�nes a
unique con�guration (triangle) in this case. A set of two points or one point de�nes
three triangles (we have to add one or two arti�cial points which can be done in three
ways). The empty set de�nes one triangle, the initial triangle consisting of just the three
arti�cial points.

Furthermore, in the setting of the Delaunay triangulation, a con�guration is active
w.r.t. R if it is in DT(R ∪ {a,b, c}), i.e. we have T(R) = DT(R ∪ {a,b, c}).

7.3 Expected structural change

Let us �x a con�guration space S = (X,Π,D,K) for the remainder of this lecture. We
can also interpret the incremental construction in S. Given R ⊆ X and s ∈ X \ R, we
want to update T(R) to T(R ∪ {s}). What is the number of new con�gurations that arise
during this step? For the case of Delaunay triangulations, this is the relevant question
when we want to bound the number of Lawson �ips during one update step, since this
number is exactly the number of new con�gurations minus three.

Here is the general picture.

De�nition 7.4 For Q ⊆ X and s ∈ Q, deg(s,Q) is de�ned as the number of con�gura-
tions of T(Q) that have s in their de�ning set.

With this, we can say that the number of new con�gurations in going from T(R) to
T(R∪{s}) is precisely deg(s,R∪{s}), since the new con�gurations are by de�nition exactly
the ones that have s in their de�ning set.

Now the random insertion order comes in for the �rst time: what is

E(deg(s,R ∪ {s})),

averaged over all insertion orders? In such a random insertion order, R is a random r-
element subset of X (when we are about to insert the (r+1)-st element), and s is a random
element of X \ R. Let Tr be the �random variable� for the set of active con�gurations
after r insertion steps.

It seems hard to average over all R, but there is a trick: we make a movie of the
randomized incremental construction, and then we watch the movie backwards. What
we see is elements of X being deleted one after another, again in random order. This is
due to the fact that the reverse of a random order is also random. At the point where the
(r+ 1)-st element is being deleted, it is going to be a random element s of the currently
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present (r + 1)-element subset Q. For �xed Q, the expected degree of s is simply the
average degree of an element in Q which is

1
r+ 1

∑
s∈Q

deg(s,Q) 6
d

r+ 1
|T(Q)|,

since the sum counts every con�guration of T(Q) at most d times. Since Q is a random
(r+ 1)-element subset, we get

E(deg(s,R ∪ {s})) 6
d

r+ 1
tr+1,

where tr+1 is de�ned as the expected number of active con�gurations w.r.t. a random
(r+ 1)-element set.

Here is a more formal derivation that does not use the backwards movie view. It
exploits the bijection

(R, s) 7→ (R ∪ {s}︸ ︷︷ ︸
Q

, s)

between pairs (R, s) with |R| = r and s /∈ R and pairs (Q, s) with |Q| = r+ 1 and s ∈ Q.
Let n = |X|.

E(deg(s,R ∪ {s})) =
1(
n
r

) ∑
R⊆X,|R|=r

1
n− r

∑
s∈X\R

deg(s,R ∪ {s})

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

1
n− r

∑
s∈Q

deg(s,Q)

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) 1
n− r

∑
s∈Q

deg(s,Q)

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

1
r+ 1

∑
s∈Q

deg(s,Q)

6
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

d

r+ 1
|T(Q)|

=
d

r+ 1
tr+1.

Thus, the expected number of new con�gurations in going from Tr to Tr+1 is bounded
by

d

r+ 1
tr+1,
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where tr+1 is the expected size of Tr+1.
What do we get for Delaunay triangulations? We have d = 3 and tr+1 6 2(r+ 4) − 4

(the maximum number of triangles in a triangulation of r+ 4 points). Hence,

E(deg(s,R ∪ {s})) 6
6r+ 12
r+ 1

≈ 6.

This means that on average, ≈ 3 Lawson �ips are done to update DTr (the Delaunay
triangulation after r insertion steps) to DTr+1. Over the whole algorithm, the expected
update cost is thus O(n).

7.4 Bounding location costs by con�ict counting

Before we can even update DTr to DTr+1 during the incremental construction of the
Delaunay triangulation, we need to locate the new point s in DTr, meaning that we need
to �nd the triangle that contains s. We have done this with the history graph: During
the insertion of s we �visit" a sequence of triangles from the history graph, each of which
contains s and was created at some previous iteration k < r.

However, some of these visited triangles are �ephemeral" triangles (recall the discus-
sion at the end of Section 6.2), and they present a problem to the generic analysis we
want to perform. Therefore, we will do a charging scheme, so that all triangles charged
are valid Delaunay triangles.

The charging scheme is as follows: If the visited triangle ∆ is a valid Delaunay triangle
(from some previous iteration), then we simply charge the visit of ∆ during the insertion
of s to the triangle-point pair (∆, s).

If, on the other hand, ∆ is an �ephemeral" triangle, then ∆ was destroyed, together
with some neighbor ∆ ′, by a Lawson �ip into another pair ∆ ′′, ∆ ′′′. Note that this
neighbor ∆ ′ was a valid triangle. Thus, in this case we charge the visit of ∆ during the
insertion of s to the pair (∆ ′, s). Observe that s is contained in the circumcircle of ∆ ′,
so s is in con�ict with ∆ ′.

This way, we have charged each visit to a triangle in the history graph to a triangle-
point pair of the form (∆, s), such that ∆ is in con�ict with s. Furthermore, it is easy to
see that no such pair gets charged more than once.

We de�ne the notion of a con�ict in general:

De�nition 7.5 A con�ict is a con�guration-element pair (∆, s) where ∆ ∈ Tr for some
r and s ∈ K(∆).

Thus, the running time of the Delaunay algorithm is proportional to the number of
con�icts. We now proceed to derive a bound on the expected number of con�icts in the
generic con�guration-space framework.
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7.5 Expected number of con�icts

Since every con�guration involved in a con�ict has been created in some step r (we
include step 0), the total number of con�icts is

n∑
r=0

∑
∆∈Tr\Tr−1

|K(∆)|,

where T−1 := ∅. T0 consists of constantly many con�gurations only (namely those where
the set of de�ning elements is the empty set), each of which is in con�ict with at most
all elements; moreover, no con�ict is created in step n. Hence,

n∑
r=0

∑
∆∈Tr\Tr−1

|K(∆)| = O(n) +

n−1∑
r=1

∑
∆∈Tr\Tr−1

|K(∆)|,

and we will bound the latter quantity. Let

K(r) :=
∑

∆∈Tr\Tr−1

|K(∆)|, r = 1, . . . ,n− 1.

and k(r) := E(K(r)) the expected number of con�icts created in step r.

Bounding k(r). We know that Tr arises from a random r-element set R. Fixing R, the
backwards movie view tells us that Tr−1 arises from Tr by deleting a random element s
of R. Thus,

k(r) =
1(
n
r

) ∑
R⊆X,|R|=r

1
r

∑
s∈R

∑
∆∈T(R)\T(R\{s})

|K(∆)|

=
1(
n
r

) ∑
R⊆X,|R|=r

1
r

∑
s∈R

∑
∆∈T(R),s∈D(∆)

|K(∆)|

6
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
∆∈T(R)

|K(∆)|,

since in the sum over s ∈ R, every con�guration is counted at most d times. Since we
can rewrite∑

∆∈T(R)

|K(∆)| =
∑
y∈X\R

|{∆ ∈ T(R) : y ∈ K(∆)}|,

we thus have

k(r) 6
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|{∆ ∈ T(R) : y ∈ K(∆)}|.

To estimate this further, here is a simple but crucial
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Lemma 7.6 The con�gurations in T(R) that are not in con�ict with y are the con�g-
urations in T(R ∪ {y}) that do not have y in their de�ning set; in formulas:

|T(R)| − |{∆ ∈ T(R) : y ∈ K(∆)}| = |T(R ∪ {y})| − deg(y,R ∪ {y}).

The proof is a direct consequence of the de�nitions: every con�guration in T(R) not in
con�ict with y is by de�nition still present in T(R ∪ {y}) and still does not have y in
its de�ning set. And a con�guration in T(R ∪ {y}) with y not in its de�ning set is by
de�nition already present in T(R) and already there not in con�ict with y.

The lemma implies that

k(r) 6 k1(r) − k2(r) + k3(r),

where

k1(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R)|,

k2(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R ∪ {y})|,

k3(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

deg(y,R ∪ {y}).

Estimating k1(r). This is really simple.

k1(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R)|

=
1(
n
r

) ∑
R⊆X,|R|=r

d

r
(n− r)|T(R)|

=
d

r
(n− r)tr.
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Estimating k2(r). For this, we need to employ our earlier (R,y) 7→ (R ∪ {y},y) bijection
again.

k2(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R ∪ {y})|

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d

r

∑
y∈Q

|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) d
r
(r+ 1)|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

d

r
(n− r)|T(Q)|

=
d

r
(n− r)tr+1

=
d

r+ 1
(n− (r+ 1))tr+1 +

dn

r(r+ 1)
tr+1

= k1(r+ 1) +
dn

r(r+ 1)
tr+1.

Estimating k3(r). This is similar to k2(r) and in addition uses a fact that we have em-
ployed before:

∑
y∈Q deg(y,Q) 6 d|T(Q)|.

k3(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

deg(y,R ∪ {y})

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d

r

∑
y∈Q

deg(y,Q)

6
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d2

r
|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) d2
r

|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

n− r

r+ 1
· d

2

r
|T(Q)|

=
d2

r(r+ 1)
(n− r)tr+1

=
d2n

r(r+ 1)
tr+1 −

d2

r+ 1
tr+1.
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Summing up. Let us recapitulate: the overall expected number of con�icts is O(n) plus

n−1∑
r=1

k(r) =

n−1∑
r=1

(k1(r) − k2(r) + k3(r)).

Using our previous estimates, k1(2), . . . ,k1(n − 1) are canceled by the �rst terms of
k2(1), . . . ,k2(n − 2). The second term of k2(r) can be combined with the �rst term of
k3(r), so that we get

n−1∑
r=1

(k1(r) − k2(r) + k3(r)) 6 k1(1) − k1(n)︸ ︷︷ ︸
=0

+n

n−1∑
r=1

d(d− 1)
r(r+ 1)

tr+1 −

n−1∑
r=1

d2

r+ 1
tr+1

6 d(n− 1)t1 + d(d− 1)n
n−1∑
r=1

tr+1

r(r+ 1)

= O

(
d2n

n∑
r=1

tr

r2

)
.

The Delaunay case. We have argued that the expected number of con�icts asymptotically
bounds the expected total location cost over all insertion steps. The previous equation
tells us that this cost is proportional to O(n) plus

O

(
9n

n∑
r=1

2(r+ 4) − 4
r2

)
= O

(
n

n∑
r=1

1
r

)
= O(n logn).

Here,

n∑
r=1

1
r

=: Hn

is the n-th Harmonic Number which is known to be approximately lnn.
By going through the abstract framework of con�guration spaces, we have thus ana-

lyzed the randomized incremental construction of the Delaunay triangulation of n points.
According to Section 7.3, the expected update cost itself is only O(n). The steps dom-
inating the runtime are the location steps via the history graph. According to Section
7.5, all history graph searches (whose number is proportional to the number of con�icts)
can be performed in expected time O(n logn), and this then also bounds the space
requirements of the algorithm.

Exercise 7.7 Design and analyze a sorting algorithm based on randomized incremen-
tal construction in con�guration spaces. The input is a set S of numbers, and the
output should be the sorted sequence (in increasing order).
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a) De�ne an appropriate con�guration space for the problem! In particular, the
set of active con�gurations w.r.t. S should represent the desired sorted se-
quence.

b) Provide an e�cient implementation of the incremental construction algo-
rithm. �E�cient� means that the runtime of the algorithm is asymptotically
dominated by the number of con�icts.

c) What is the expected number of con�icts (and thus the asymptotic runtime of
your sorting algorithm) for a set S of n numbers?

Questions

28. What is a con�guration space? Give a precise de�nition! What is an active
con�guration?

29. How do we get a con�guration space from the problem of computing the De-
launay triangulation of a �nite point set?

30. How many new active con�gurations do we get on average when inserting the
r-th element? Provide an answer for con�guration spaces in general, and for the
special case of the Delaunay triangulation.

31. What is a con�ict? Provide an answer for con�guration spaces in general, and
for the special case of the Delaunay triangulation.

32. Explain why counting the expected number of con�icts asymptotically bounds
the cost for the history searches during the randomized incremental construc-
tion of the Delaunay triangulation!

110


