Chapter 9

Line Arrangements

During the course of this lecture we encountered several situations where it was conve-
nient to assume that a point set is “in general position”. In the plane, general position
usually amounts to no three points being collinear and/or no four of them being cocircu-
lar. This raises an algorithmic question: How can we test for n given points whether or
not three of them are collinear? Obviously, we can test all triples in O(n?®) time. Can we
do better? Yes, we can! Using a detour through the so-called dual plane, we will see that
this problem can be solved in O(n?) time. However, the exact algorithmic complexity
of this innocent-looking problem is not known. In fact, to determine this complexity is
one of the major open problems in theoretical computer science.

We will get back to the complexity theoretic problems and ramifications at the end
of this chapter. But first let us discuss how to obtain a quadratic time algorithm to test
whether n given points in the plane are in general position. This algorithm is a nice ap-
plication of the projective duality transform, as defined below. Such transformations are
very useful because they allow us to gain a new perspective on a problem by formulating
it in a different but equivalent form. Sometimes such a dual form of the problem is easier
to work with and—given that it is equivalent to the original primal form—any solution
to the dual problem can be translated back into a solution to the primal problem.

So what is this duality transform about? Observe that points and hyperplanes in R¢
are very similar objects, given that both can be described using d coordinates/parameters.
It is thus tempting to match these parameters to each other and so create a mapping
between points and hyperplanes. In R? hyperplanes are lines and the standard projec-
twve duality transform maps a point p = (py,py) to the line p* : y = pyx —py, and a
non-vertical line g : y = mx + b to the point g* = (m, —b).

Proposition 9.1 The standard projective duality transform is
e incidence preserving: p € g < ¢g* €p* and
e order preserving: p 1s above g <= g* 15 above p*.

Exercise 9.2 Prove Proposition (9.1
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Exercise 9.3 Describe the image of the following point sets under this mapping
a) a halfplane
b) k > 3 collinear points
c) a line segment
d) the boundary points of the upper convez hull of a finite point set.

Another way to think of duality is in terms of the parabola P:y = %xz. For a point
p on P, the dual line p* is the tangent to P at p. For a point p not on P, consider the
vertical projection p’ of p onto P: the slopes of p* and p’* are the same, just p* is shifted
by the difference in y-coordinates.

Figure 9.1: Point «— line duality with respect to the parabola P :y = %xz.

The question of whether or not three points in the primal plane are collinear trans-
forms to whether or not three lines in the dual plane meet in a point. This question in
turn we will answer with the help of line arrangements, as defined below.

9.1 Arrangements

The subdivision of the plane induced by a finite set L of lines is called the arrangement
A(L). We may imagine the creation of this subdivision as a recursive process, defined
by the given set L of lines. As a first step, remove all lines (considered as point sets)
from the plane R?. What remains of R? are a number of open connected components
(possibly only one), which we call the (2-dimensional) cells of the subdivision. In the
next step, from every line in [ remove all the remaining lines (considered as point sets).
In this way every line is split into a number of open connected components (possibly only
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one), which collectively form the (1-dimensional cells or) edges of the subdivision. What
remains of the lines are the (0-dimensional cells or) vertices of the subdivision, which are
intersection points of lines from L.

Observe that all cells of the subdivision are intersections of halfplanes and thus con-
vex. A line arrangement is simple if no two lines are parallel and no three lines meet in
a point. Although lines are unbounded, we can regard a line arrangement a bounded
object by (conceptually) putting a sufficiently large box around that contains all vertices.
Such a box can be constructed in O(nlogn) time for n lines.

Exercise 9.4 How?

Moreover, we can view a line arrangement as a planar graph by adding an additional
vertex at “infinity”, that is incident to all rays which leave this bounding box. For
algorithmic purposes, we will mostly think of an arrangement as being represented by a
doubly connected edge list (DCEL), cf. Section [2.2.1]

Theorem 9.5 A simple arrangement A(L) of n lines in R? has (’21) vertices, n? edges,
and (3) +n+1 faces/cells.

Proof. Since all lines intersect and all intersection points are pairwise distinct, there are
(3) vertices.

The number of edges we count using induction on n. For n = 1 we have 12 = 1 edge.
By adding one line to an arrangement of n — 1 lines we split n — 1 existing edges into
two and introduce n new edges along the newly inserted line. Thus, there are in total
MmM—12+2n—1=n2-2n+1+2n—1=n? edges.

The number f of faces can now be obtained from Euler’s formula v — e+ f = 2, where
v and e denote the number of vertices and edges, respectively. However, in order to
apply Euler’s formula we need to consider A(L) as a planar graph and take the symbolic
“infinite” vertex into account. Therefore,

f=2— ((;L) —1-1) +n? :1—1—%(2n2—n(n—1)) :1—1—%(n2—|—n) =1+ (2) +n.

O

The complexity of an arrangement is simply the total number of vertices, edges, and faces
(in general, cells of any dimension).

Exercise 9.6 Consider a set of lines in the plane with no three intersecting in a
common point. Form a graph G whose vertices are the intersection points of the
lines and such that two vertices are adjacent if and only if they appear consecutively
along one of the lines. Prove that x(G) < 3, where xX(G) denotes the chromatic
number of the graph G. In other words, show how to color the vertices of G using
at most three colors such that no two adjacent vertices have the same color.
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9.2 Construction

As the complexity of a line arrangement is quadratic, there is no need to look for a sub-
quadratic algorithm to construct it. We will simply construct it incrementally, inserting
the lines one by one. Let {1,...,{,, be the order of insertion.

At Step i of the construction, locate {; in the leftmost cell of A({{y,..., ¢ _1}) it
intersects. (The halfedges leaving the infinite vertex are ordered by slope.) This takes
O(i) time. Then traverse the boundary of the face F found until the halfedge h is found
where {; leaves F (see Figure for illustration). Insert a new vertex at this point,
splitting F and h and continue in the same way with the face on the other side of h.

Figure 9.2: Incremental construction: Insertion of a line L. (Only part of the ar-
rangement is shown in order to increase readability.)

The insertion of a new vertex involves splitting two halfedges and thus is a constant
time operation. But what is the time needed for the traversal? The complexity of
A{ly,...,4_1}) is O(i?), but we will see that the region traversed by a single line has
linear complexity only.

9.3 Zone Theorem

For a line { and an arrangement A(L), the zone Z4(1(£) of £ in A(L) is the set of cells
from A(L) whose closure intersects (.

Theorem 9.7 Given an arrangement A(L) of n lines in R? and a line { (not necessarily
from L), the total number of edges in all cells of the zone Z41)({) s at most 6n.

Proof. Without loss of generality suppose that { is horizontal (rotate the plane accord-
ingly).
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For each cell of Z,4(1)({) split its boundary at its topmost
vertex and at its bottommost vertex and orient all edges from
bottom to top, horizontal edges from left to right. Those edges
that have the cell to their right are called left-bounding for the
cell and those edges that have the cell to their left are called
right-bounding. For instance, for the cell depicted to the right
all left-bounding edges are shown blue and bold.

We will show that there are at most 3n left-bounding edges in Z 4(1)({) by induction
on n. By symmetry, the same bound holds also for the number of right-bounding edges
in ZA(]_) ((Z) .

For n = 1, there is at most one (exactly one, unless { is parallel to and lies above the
only line in L) left-bounding edge in Z 4(1)(£) and 1 < 3n = 3. Assume the statement is
true for n — 1.

Figure 9.3: At most three new left-bounding edges are created by adding r to A(L\{r}).

If no line from L intersects £, then all lines in L U {{} are horizontal and there is at
most 1 < 3n left-bounding edge in Z,4(1)({). Else consider the rightmost line r from L
intersecting ¢ and the arrangement A(L \ {r}). By the induction hypothesis there are at
most 3n — 3 left-bounding edges in Z 4(1\(+})({). Adding r back adds at most three new
left-bounding edges: At most two edges (call them {, and {;) of the rightmost cell of
Zy(1\(+})({) are intersected by r and thereby split in two. Both of these two edges may be
left-bounding and thereby increase the number of left-bounding edges by at most two.
In any case, r itself contributes exactly one more left-bounding edge to that cell. The
line r cannot contribute a left-bounding edge to any cell other than the rightmost: to
the left of r, the edges induced by r form right-bounding edges only and to the right
of r all other cells touched by r (if any) are shielded away from { by one of {, or {;.
Therefore, the total number of left-bounding edges in Z4(1)(¢) is bounded from above
by 3+3n—3=3n. O

Corollary 9.8 The arrangement of n lines in R? can be constructed in optimal O(n?)
time and space.
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