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For each cell of ZA(L)(`) split its boundary at its topmost
vertex and at its bottommost vertex and orient all edges from
bottom to top, horizontal edges from left to right. Those edges
that have the cell to their right are called left-bounding for the
cell and those edges that have the cell to their left are called
right-bounding. For instance, for the cell depicted to the right
all left-bounding edges are shown blue and bold.

We will show that there are at most 3n left-bounding edges in ZA(L)(`) by induction
on n. By symmetry, the same bound holds also for the number of right-bounding edges
in ZA(L)(`).

For n = 1, there is at most one (exactly one, unless ` is parallel to and lies above the
only line in L) left-bounding edge in ZA(L)(`) and 1 6 3n = 3. Assume the statement is
true for n− 1.

`

r

`0

`1

Figure 9.3: At most three new left-bounding edges are created by adding r to A(L\{r}).

If no line from L intersects `, then all lines in L ∪ {`} are horizontal and there is at
most 1 < 3n left-bounding edge in ZA(L)(`). Else consider the rightmost line r from L

intersecting ` and the arrangement A(L \ {r}). By the induction hypothesis there are at
most 3n− 3 left-bounding edges in ZA(L\{r})(`). Adding r back adds at most three new
left-bounding edges: At most two edges (call them `0 and `1) of the rightmost cell of
ZA(L\{r})(`) are intersected by r and thereby split in two. Both of these two edges may be
left-bounding and thereby increase the number of left-bounding edges by at most two.
In any case, r itself contributes exactly one more left-bounding edge to that cell. The
line r cannot contribute a left-bounding edge to any cell other than the rightmost: to
the left of r, the edges induced by r form right-bounding edges only and to the right
of r all other cells touched by r (if any) are shielded away from ` by one of `0 or `1.
Therefore, the total number of left-bounding edges in ZA(L)(`) is bounded from above
by 3 + 3n− 3 = 3n. �

Corollary 9.8 The arrangement of n lines in R2 can be constructed in optimal O(n2)

time and space.
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Proof. Use the incremental construction described above. In Step i, for 1 6 i 6 n,
we do a linear search among i − 1 elements to �nd the starting face and then traverse
(part of) the zone of the line `i in the arrangement A({`1, . . . , `i−1}). By Theorem 9.7
the complexity of this zone and hence the time complexity of Step i altogether is O(i).
Overall we obtain

∑n
i=1 ci = O(n2) time (and space), for some constant c > 0, which is

optimal by Theorem 9.5. �

The corresponding bounds for hyperplane arrangements in Rd are Θ(nd) for the com-
plexity of a simple arrangement andO(nd−1) for the complexity of a zone of a hyperplane.

Exercise 9.9 For an arrangement A of a set of n lines in R2, let F :=
⋃
C is cell of AC

denote the union of the closure of all bounded cells. Show that the complexity
(number of vertices and edges of the arrangement lying on the boundary) of F is
O(n).

9.4 The Power of Duality

The real beauty and power of line arrangements becomes apparent in context of projective
point ↔ line duality. It is often convenient to assume that no two points in the primal
have the same x-coordinate so that no line de�ned by any two points is vertical (and
hence becomes an in�nite point in the dual). This degeneracy can be tested for by sorting
according to x-coordinate (in O(n logn) time) and resolved by rotating the whole plane
by some su�ciently small angle. In order to select the rotation angle it is enough to
determine the line of maximum absolute slope that passes through two points. Then we
can take, say, half of the angle between such a line and the vertical direction. As the
line of maximum slope through any given point can be found in linear time, the overall
maximum can be obtained in O(n2) time.

The following problems can be solved in O(n2) time and space by constructing the
dual arrangement.

General position test. Given n points in R2, are any three of them collinear? (Dual: do
three lines meet in a point?)

Minimum area triangle. Given n points in R2, what is the minimum area triangle spanned
by any three of them? For any vertex `∗ of the dual arrangement (primal: line ` through
two points p and q) �nd the closest point vertically above/below `∗ through which an
input line passes (primal: closest line below/above and parallel to ` that passes through
an input point). In this way one can �nd O(n2) candidate triangles by constructing
the arrangement of the n dual lines. For instance, maintain over the incremental con-
struction for each vertex a vertically closest line. The number of vertices to be updated
during insertion of a line ` corresponds to the complexity of the zone of ` in the arrange-
ment constructed so far. Therefore maintaining this information comes at no extra cost
asymptotically.
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The smallest among those candidates can be determined by a straightforward mini-
mum selection (comparing the area of the corresponding triangles). Observe that vertical
distance is not what determines the area of the corresponding triangle but orthogonal
distance. However, the points that minimize these measures for any �xed line are the
same. . .

Exercise 9.10 A set P of n points in the plane is said to be in ε-general position for
ε > 0 if no three points of the form

p+ (x1,y1),q+ (x2,y2), r+ (x3,y3)

are collinear, where p,q, r ∈ P and |xi|, |yi| < ε, for i ∈ {1, 2, 3}. In words: P remains
in general position under changing point coordinates by less than ε each.

Give an algorithm with runtime O(n2) for checking whether a given point set P
is in ε-general position.

9.5 Rotation Systems�Sorting all Angular Sequences

Recall the notion of a combinatorial embedding from Chapter 2. It is speci�ed by
the circular order of edges along the boundary of each face or�equivalently, dually�
around each vertex. In a similar way we can also give a combinatorial description of the
geometry of a �nite point set P ⊂ R2 using its rotation system. This is nothing else but a
combinatorial embedding of the complete geometric (straight line) graph on P, speci�ed
by the circular order of edges around vertices.1

For a given set P of n points, it is trivial to construct the corresponding rotation
system in O(n2 logn) time, by sorting each of the n lists of neighbors independently.
The following theorem describes a more e�cient, in fact optimal, algorithm.

Theorem 9.11 Consider a set P of n points in the plane. For a point q ∈ P let cP(q)

denote the circular sequence of points from S \ {q} ordered counterclockwise around
q (in order as they would be encountered by a ray sweeping around q). The rotation
system of P, consisting of all cP(q), for q ∈ P, collectively can be obtained in O(n2)

time.

Proof. Consider the projective dual P∗ of P. An angular sweep around a point q ∈ P
in the primal plane corresponds to a traversal of the line q∗ from left to right in the
dual plane. (A collection of lines through a single point q corresponds to a collection of
points on a single line q∗ and slope corresponds to x-coordinate.) Clearly, the sequence of
intersection points along all lines in P∗ can be obtained by constructing the arrangement
in O(n2) time. In the primal plane, any such sequence corresponds to an order of the
remaining points according to the slope of the connecting line; to construct the circular

1As these graphs are not planar for |P| > 5, we do not have the natural dual notion of faces as in the
case of planar graphs.
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sequence of points as they are encountered around q, we have to split the sequence
obtained from the dual into those points that are to the left of q and those that are to
the right of q; concatenating both yields the desired sequence. �

Exercise 9.12 (Eppstein [1]) Describe an O(n2) time algorithm that given a set P of n
points in the plane �nds a subset of �ve points that form a strictly convex empty
pentagon (or reports that there is none if that is the case). Empty means that the
convex pentagon may not contain any other points of P.

Hint: For each p ∈ P discard all points to the left of p and consider the polygon
S(p) formed by p and the remaining points taken in circular order around p. Ex-
plain why it su�ces to check for all p whether S(p) has four vertices other than p
that form an empty convex quadrilateral. How do you check this in O(n2) time?

Remark: It was shown by Harborth [5] that every set of ten or more points in
general position contains a subset of �ve points that form a strictly convex empty
pentagon.

9.6 3-Sum

The 3-Sum problem is the following: Given a set S of n integers, does there exist a
three-tuple2 of elements from S that sum up to zero? By testing all three-tuples this
can obviously be solved in O(n3) time. If the tuples to be tested are picked a bit more
cleverly, we obtain an O(n2) algorithm.

Let (s1, . . . , sn) be the sequence of elements from S in increasing order. This sequence
can be obtained by sorting in O(n logn) time. Then we test the tuples as follows.

For i = 1, . . . ,n {
j = i, k = n.
While k > j {

If si + sj + sk = 0 then exit with triple si, sj, sk.
If si + sj + sk > 0 then k = k− 1 else j = j+ 1.

}
}

The runtime is clearly quadratic. Regarding the correctness observe that the following
is an invariant that holds at the start of every iteration of the inner loop: si+sx+sk < 0,
for all x ∈ {i, . . . , j− 1}, and si + sj + sx > 0, for all x ∈ {k+ 1, . . . ,n}.

Interestingly, until very recently this was the best algorithm known for 3-Sum. But
at FOCS 2014, Grønlund and Pettie [4] present a deterministic algorithm that solves
3-Sum in O(n2(log logn/ logn)2/3) time. They also give a bound of O(n3/2

√
logn) on

2That is, an element of S may be chosen twice or even three times, although the latter makes sense for
the number 0 only. :-)
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the decision tree complexity of 3-Sum. The big open question remains whether an
O(n2−ε) algorithm can be achieved. On the other hand, in some very restricted models
of computation�such as the linear decision tree model�3-Sum cannot be solved in
sub-quadratic time [2].

3-Sum hardness There is a whole class of problems that are equivalent to 3-Sum up to
sub-quadratic time reductions [3]; such problems are referred to as 3-Sum-hard.

De�nition 9.13 A problem P is 3-Sum-hard if and only if every instance of 3-Sum
of size n can be solved using a constant number of instances of P�each of O(n)

size�and o(n2) additional time.3

For instance, it is not hard to show that the following variation of 3-Sum�let us
denote it by 3-Sum◦�is 3-Sum hard: Given a set S of n integers, does there exist a
three-element subset of S whose elements sum up to zero?

Exercise 9.14 Show that 3-Sum◦ is 3-Sum hard.

As another example, consider the Problem GeomBase: Given n points on the three
horizontal lines y = 0, y = 1, and y = 2, is there a non-horizontal line that contains at
least three of them?

3-Sum can be reduced to GeomBase as follows. For an instance S = {s1, . . . , sn} of
3-Sum, create an instance P of GeomBase in which for each si there are three points in
P: (si, 0), (−si/2, 1), and (si, 2). If there are any three collinear points in P, there must
be one from each of the lines y = 0, y = 1, and y = 2. So suppose that p = (si, 0),
q = (−sj/2, 1), and r = (sk, 2) are collinear. The inverse slope of the line through p
and q is −sj/2−si

1−0
= −sj/2 − si and the inverse slope of the line through q and r is

sk+sj/2

2−1
= sk+ sj/2. The three points are collinear if and only if the two slopes are equal,

that is, −sj/2 − si = sk + sj/2 ⇐⇒ si + sj + sk = 0.

A very similar problem is General Position, in which one is given n arbitrary points
and has to decide whether any three are collinear. For an instance S of 3-Sum◦, create
an instance P of General Position by projecting the numbers si onto the curve y = x3,
that is, P = {(a,a3) |a ∈ S}.

Suppose three of the points, say, (a,a3), (b,b3), and (c, c3) are collinear. This is the
case if and only if the slopes of the lines through each pair of them are equal. (Observe

3In light of the recent results of Grønlund and Pettie one should probably write O(n2−ε) here. Anyway,
the reductions discussed here will be either linear or O(n logn) time.
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that a, b, and c are pairwise distinct.)

(b3 − a3)/(b− a) = (c3 − b3)/(c− b) ⇐⇒
b2 + a2 + ab = c2 + b2 + bc ⇐⇒

b = (c2 − a2)/(a− c) ⇐⇒
b = −(a+ c) ⇐⇒

a+ b+ c = 0 .

Minimum Area Triangle is a strict generalization of General Position and, therefore, also
3-Sum-hard.

In Segment Splitting/Separation, we are given a set of n line segments and have to
decide whether there exists a line that does not intersect any of the segments but splits
them into two non-empty subsets. To show that this problem is 3-Sum-hard, we can
use essentially the same reduction as for GeomBase, where we interpret the points along
the three lines y = 0, y = 1, and y = 2 as su�ciently small �holes�. The parts of the
lines that remain after punching these holes form the input segments for the Splitting
problem. Horizontal splits can be prevented by putting constant size gadgets somewhere
beyond the last holes, see the �gure below. The set of input segments for the segment

splitting problem requires sorting the points along each of the three horizontal lines,
which can be done in O(n logn) = o(n2) time. It remains to specify what �su�ciently
small� means for the size of those holes. As all input numbers are integers, it is not hard
to show that punching a hole of (x − 1/4, x + 1/4) around each input point x is small
enough.

In Segment Visibility, we are given a set S of n horizontal line segments and two
segments s1, s2 ∈ S. The question is: Are there two points, p1 ∈ s1 and p2 ∈ s2 which
can see each other, that is, the open line segment p1p2 does not intersect any segment
from S? The reduction from 3-Sum is the same as for Segment Splitting, just put s1
above and s2 below the segments along the three lines.

In Motion Planning, we are given a robot (line segment), some environment (modeled
as a set of disjoint line segments), and a source and a target position. The question is:
Can the robot move (by translation and rotation) from the source to the target position,
without ever intersecting the �walls� of the environment?

To show that Motion Planning is 3-Sum-hard, employ the reduction for Segment
Splitting from above. The three �punched� lines form the doorway between two rooms,
each modeled by a constant number of segments that cannot be split, similar to the
boundary gadgets above. The source position is in one room, the target position in the
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other, and to get from source to target the robot has to pass through a sequence of three
collinear holes in the door (suppose the doorway is su�ciently small compared to the
length of the robot).

Exercise 9.15 The 3-Sum' problem is de�ned as follows: given three sets S1,S2,S3 of
n integers each, are there a1 ∈ S1, a2 ∈ S2, a3 ∈ S3 such that a1 + a2 + a3 = 0?
Prove that the 3-Sum' problem and the 3-Sum problem as de�ned in the lecture
(S1 = S2 = S3) are equivalent, more precisely, that they are reducible to each other
in subquadratic time.

9.7 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now it
is time to distribute the prey. Both, of course, should get the same number of rubies
and the same number of diamonds. On the other hand, it would be a pity to completely
disintegrate the beautiful necklace. Hence they want to use as few cuts as possible to
achieve a fair gem distribution.

To phrase the problem in a geometric (and somewhat more general) setting: Given
two �nite sets R and D of points, construct a line that bisects both sets, that is, in either
halfplane de�ned by the line there are about half of the points from R and about half of
the points from D. To solve this problem, we will make use of the concept of levels in
arrangements.

De�nition 9.16 Consider an arrangement A(L) induced by a set L of n non-vertical
lines in the plane. We say that a point p is on the k-level in A(L) if there are at
most k− 1 lines below and at most n− k lines above p. The 1-level and the n-level
are also referred to as lower and upper envelope, respectively.

Figure 9.4: The 3-level of an arrangement.

Another way to look at the k-level is to consider the lines to be real functions; then the
lower envelope is the pointwise minimum of those functions, and the k-level is de�ned
by taking pointwise the kth-smallest function value.
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