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other, and to get from source to target the robot has to pass through a sequence of three
collinear holes in the door (suppose the doorway is su�ciently small compared to the
length of the robot).

Exercise 9.15 The 3-Sum' problem is de�ned as follows: given three sets S1,S2,S3 of
n integers each, are there a1 ∈ S1, a2 ∈ S2, a3 ∈ S3 such that a1 + a2 + a3 = 0?
Prove that the 3-Sum' problem and the 3-Sum problem as de�ned in the lecture
(S1 = S2 = S3) are equivalent, more precisely, that they are reducible to each other
in subquadratic time.

9.7 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now it
is time to distribute the prey. Both, of course, should get the same number of rubies
and the same number of diamonds. On the other hand, it would be a pity to completely
disintegrate the beautiful necklace. Hence they want to use as few cuts as possible to
achieve a fair gem distribution.

To phrase the problem in a geometric (and somewhat more general) setting: Given
two �nite sets R and D of points, construct a line that bisects both sets, that is, in either
halfplane de�ned by the line there are about half of the points from R and about half of
the points from D. To solve this problem, we will make use of the concept of levels in
arrangements.

De�nition 9.16 Consider an arrangement A(L) induced by a set L of n non-vertical
lines in the plane. We say that a point p is on the k-level in A(L) if there are at
most k− 1 lines below and at most n− k lines above p. The 1-level and the n-level
are also referred to as lower and upper envelope, respectively.

Figure 9.4: The 3-level of an arrangement.

Another way to look at the k-level is to consider the lines to be real functions; then the
lower envelope is the pointwise minimum of those functions, and the k-level is de�ned
by taking pointwise the kth-smallest function value.
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Theorem 9.17 Let R,D ⊂ R2 be �nite sets of points. Then there exists a line that
bisects both R and D. That is, in either open halfplane de�ned by ` there are no
more than |R|/2 points from R and no more than |D|/2 points from D.

Proof. Without loss of generality suppose that both |R| and |D| are odd. (If, say, |R| is
even, simply remove an arbitrary point from R. Any bisector for the resulting set is also
a bisector for R.) We may also suppose that no two points from R ∪ D have the same
x-coordinate. (Otherwise, rotate the plane in�nitesimally.)

Let R∗ and D∗ denote the set of lines dual to the points from R and D, respectively.
Consider the arrangement A(R∗). The median level of A(R∗) de�nes the bisecting lines
for R. As |R| = |R∗| is odd, both the leftmost and the rightmost segment of this level
are de�ned by the same line `r from R∗, the one with median slope. Similarly there is a
corresponding line `d in A(D∗).

Since no two points from R∪D have the same x-coordinate, no two lines from R∗∪D∗
have the same slope, and thus `r and `d intersect. Consequently, being piecewise linear
continuous functions, the median level of A(R∗) and the median level of A(D∗) intersect
(see Figure 9.5 for an example). Any point that lies on both median levels corresponds
to a primal line that bisects both point sets simultaneously. �

Figure 9.5: An arrangement of 3 green lines (solid) and 3 blue lines (dashed) and
their median levels (marked bold on the right hand side).

How can the thieves use Theorem 9.17? If they are smart, they drape the necklace
along some convex curve, say, a circle. Then by Theorem 9.17 there exists a line that
simultaneously bisects the set of diamonds and the set of rubies. As any line intersects
the circle at most twice, the necklace is cut at most twice. It is easy to turn the proof
given above into an O(n2) algorithm to construct a line that simultaneously bisects both
sets.

You can also think of the two point sets as a discrete distribution of a ham sandwich
that is to be cut fairly, that is, in such a way that both parts have the same amount of
ham and the same amount of bread. That is where the name �ham sandwich cut� comes
from. The theorem generalizes both to higher dimension and to more general types of
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measures (here we study the discrete setting only where we simply count points). These
generalizations can be proven using the Borsuk-Ulam Theorem, which states that any
continuous map from Sd to Rd must map some pair of antipodal points to the same
point. For a proof of both theorems see, for instance, Matou²ek's book [8].

Theorem 9.18 Let P1, . . . ,Pd ⊂ Rd be �nite sets of points. Then there exists a hy-
perplane H that simultaneously bisects all of P1, . . . ,Pd. That is, in either open
halfspace de�ned by H there are no more than |Pi|/2 points from Pi, for every
i ∈ {1, . . . ,d}.

This implies that the thieves can fairly distribute a necklace consisting of d types of
gems using at most d cuts.

In the plane, a ham sandwich cut can be found in linear time using a sophisticated
prune and search algorithm by Lo, Matou²ek and Steiger [7]. But in higher dimension,
the algorithmic problem gets harder. In fact, already for R3 the complexity of �nding a
ham sandwich cut is wide open: The best algorithm known, from the same paper by Lo
et al. [7], has runtime O(n3/2 log2 n/ log∗ n) and no non-trivial lower bound is known.
If the dimension d is not �xed, it is both NP-hard and W[1]-hard4 in d to decide the
following question [6]: Given d ∈ N, �nite point sets P1, . . . ,Pd ⊂ Rd, and a point
p ∈ ⋃di=1 Pi, is there a ham sandwich cut through p?

Exercise 9.19 The goal of this exercise is to develop a data structure for halfspace
range counting.

a) Given a set P ⊂ R2 of n points in general position, show that it is possible to
partition this set by two lines such that each region contains at most dn

4
e points.

b) Design a data structure of size O(n), which can be constructed in time O(n logn)

and allows you, for any halfspace h, to output the number of points |P ∩ h| of P
contained in this halfspace h in time O(nα), for some 0 < α < 1.

Exercise 9.20 Prove or disprove the following statement: Given three �nite sets A,B,C
of points in the plane, there is always a circle or a line that bisects A, B and C
simultaneously (that is, no more than half of the points of each set are inside or
outside the circle or on either side of the line, respectively).

Questions

39. How can one construct an arrangement of lines in R2? Describe the incremen-
tal algorithm and prove that its time complexity is quadratic in the number of lines
(incl. statement and proof of the Zone Theorem).

4Essentially this means that it is unlikely to be solvable in time O(f(d)p(n)), for an arbitrary function
f and a polynomial p.
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40. How can one test whether there are three collinear points in a set of n given
points in R2? Describe an O(n2) time algorithm.

41. How can one compute the minimum area triangle spanned by three out of n
given points in R2? Describe an O(n2) time algorithm.

42. What is a ham sandwich cut? Does it always exist? How to compute it?
State and prove the theorem about the existence of a ham sandwich cut in R2 and
describe an O(n2) algorithm to compute it.

43. Is there a subquadratic algorithm for General Position? Explain the term
3-Sum hard and its implications and give the reduction from 3-Sum to General
Position.

44. Which problems are known to be 3-Sum-hard? List at least three problems
(other than 3-Sum) and brie�y sketch the corresponding reductions.
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