
Chapter 9

Line Arrangements

During the course of this lecture we encountered several situations where it was conve-
nient to assume that a point set is �in general position�. In the plane, general position
usually amounts to no three points being collinear and/or no four of them being cocircu-
lar. This raises an algorithmic question: How can we test for n given points whether or
not three of them are collinear? Obviously, we can test all triples in O(n3) time. Can we
do better? Yes, we can! Using a detour through the so-called dual plane, we will see that
this problem can be solved in O(n2) time. However, the exact algorithmic complexity
of this innocent-looking problem is not known. In fact, to determine this complexity is
one of the major open problems in theoretical computer science.

We will get back to the complexity theoretic problems and rami�cations at the end
of this chapter. But �rst let us discuss how to obtain a quadratic time algorithm to test
whether n given points in the plane are in general position. This algorithm is a nice ap-
plication of the projective duality transform, as de�ned below. Such transformations are
very useful because they allow us to gain a new perspective on a problem by formulating
it in a di�erent but equivalent form. Sometimes such a dual form of the problem is easier
to work with and�given that it is equivalent to the original primal form�any solution
to the dual problem can be translated back into a solution to the primal problem.

So what is this duality transform about? Observe that points and hyperplanes in Rd

are very similar objects, given that both can be described using d coordinates/parameters.
It is thus tempting to match these parameters to each other and so create a mapping
between points and hyperplanes. In R2 hyperplanes are lines and the standard projec-
tive duality transform maps a point p = (px,py) to the line p∗ : y = pxx − py and a
non-vertical line g : y = mx+ b to the point g∗ = (m,−b).

Proposition 9.1 The standard projective duality transform is

� incidence preserving: p ∈ g ⇐⇒ g∗ ∈ p∗ and
� order preserving: p is above g ⇐⇒ g∗ is above p∗.

Exercise 9.2 Prove Proposition 9.1.
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Chapter 9. Line Arrangements Geometry: C&A 2014

Exercise 9.3 Describe the image of the following point sets under this mapping

a) a halfplane

b) k > 3 collinear points

c) a line segment

d) the boundary points of the upper convex hull of a �nite point set.

Another way to think of duality is in terms of the parabola P : y = 1
2
x2. For a point

p on P, the dual line p∗ is the tangent to P at p. For a point p not on P, consider the
vertical projection p ′ of p onto P: the slopes of p∗ and p ′∗ are the same, just p∗ is shifted
by the di�erence in y-coordinates.

p

p∗

q

q∗

`∗

`

P

Figure 9.1: Point ↔ line duality with respect to the parabola P : y = 1
2
x2.

The question of whether or not three points in the primal plane are collinear trans-
forms to whether or not three lines in the dual plane meet in a point. This question in
turn we will answer with the help of line arrangements, as de�ned below.

9.1 Arrangements

The subdivision of the plane induced by a �nite set L of lines is called the arrangement
A(L). We may imagine the creation of this subdivision as a recursive process, de�ned
by the given set L of lines. As a �rst step, remove all lines (considered as point sets)
from the plane R2. What remains of R2 are a number of open connected components
(possibly only one), which we call the (2-dimensional) cells of the subdivision. In the
next step, from every line in L remove all the remaining lines (considered as point sets).
In this way every line is split into a number of open connected components (possibly only
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Geometry: C&A 2014 9.1. Arrangements

one), which collectively form the (1-dimensional cells or) edges of the subdivision. What
remains of the lines are the (0-dimensional cells or) vertices of the subdivision, which are
intersection points of lines from L.

Observe that all cells of the subdivision are intersections of halfplanes and thus con-
vex. A line arrangement is simple if no two lines are parallel and no three lines meet in
a point. Although lines are unbounded, we can regard a line arrangement a bounded
object by (conceptually) putting a su�ciently large box around that contains all vertices.
Such a box can be constructed in O(n logn) time for n lines.

Exercise 9.4 How?

Moreover, we can view a line arrangement as a planar graph by adding an additional
vertex at �in�nity�, that is incident to all rays which leave this bounding box. For
algorithmic purposes, we will mostly think of an arrangement as being represented by a
doubly connected edge list (DCEL), cf. Section 2.2.1.

Theorem 9.5 A simple arrangement A(L) of n lines in R2 has
(
n
2

)
vertices, n2 edges,

and
(
n
2

)
+ n+ 1 faces/cells.

Proof. Since all lines intersect and all intersection points are pairwise distinct, there are(
n
2

)
vertices.
The number of edges we count using induction on n. For n = 1 we have 12 = 1 edge.

By adding one line to an arrangement of n − 1 lines we split n − 1 existing edges into
two and introduce n new edges along the newly inserted line. Thus, there are in total
(n− 1)2 + 2n− 1 = n2 − 2n+ 1 + 2n− 1 = n2 edges.

The number f of faces can now be obtained from Euler's formula v− e+ f = 2, where
v and e denote the number of vertices and edges, respectively. However, in order to
apply Euler's formula we need to consider A(L) as a planar graph and take the symbolic
�in�nite� vertex into account. Therefore,

f = 2−

((
n

2

)
+ 1

)
+n2 = 1+

1
2
(2n2 −n(n− 1)) = 1+

1
2
(n2 +n) = 1+

(
n

2

)
+n .

�

The complexity of an arrangement is simply the total number of vertices, edges, and faces
(in general, cells of any dimension).

Exercise 9.6 Consider a set of lines in the plane with no three intersecting in a
common point. Form a graph G whose vertices are the intersection points of the
lines and such that two vertices are adjacent if and only if they appear consecutively
along one of the lines. Prove that χ(G) 6 3, where χ(G) denotes the chromatic
number of the graph G. In other words, show how to color the vertices of G using
at most three colors such that no two adjacent vertices have the same color.
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9.2 Construction

As the complexity of a line arrangement is quadratic, there is no need to look for a sub-
quadratic algorithm to construct it. We will simply construct it incrementally, inserting
the lines one by one. Let `1, . . . , `n be the order of insertion.

At Step i of the construction, locate `i in the leftmost cell of A({`1, . . . , `i−1}) it
intersects. (The halfedges leaving the in�nite vertex are ordered by slope.) This takes
O(i) time. Then traverse the boundary of the face F found until the halfedge h is found
where `i leaves F (see Figure 9.2 for illustration). Insert a new vertex at this point,
splitting F and h and continue in the same way with the face on the other side of h.

`

Figure 9.2: Incremental construction: Insertion of a line `. (Only part of the ar-
rangement is shown in order to increase readability.)

The insertion of a new vertex involves splitting two halfedges and thus is a constant
time operation. But what is the time needed for the traversal? The complexity of
A({`1, . . . , `i−1}) is Θ(i2), but we will see that the region traversed by a single line has
linear complexity only.

9.3 Zone Theorem

For a line ` and an arrangement A(L), the zone ZA(L)(`) of ` in A(L) is the set of cells
from A(L) whose closure intersects `.

Theorem 9.7 Given an arrangement A(L) of n lines in R2 and a line ` (not necessarily
from L), the total number of edges in all cells of the zone ZA(L)(`) is at most 6n.

Proof. Without loss of generality suppose that ` is horizontal (rotate the plane accord-
ingly).
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Geometry: C&A 2014 9.3. Zone Theorem

For each cell of ZA(L)(`) split its boundary at its topmost
vertex and at its bottommost vertex and orient all edges from
bottom to top, horizontal edges from left to right. Those edges
that have the cell to their right are called left-bounding for the
cell and those edges that have the cell to their left are called
right-bounding. For instance, for the cell depicted to the right
all left-bounding edges are shown blue and bold.

We will show that there are at most 3n left-bounding edges in ZA(L)(`) by induction
on n. By symmetry, the same bound holds also for the number of right-bounding edges
in ZA(L)(`).

For n = 1, there is at most one (exactly one, unless ` is parallel to and lies above the
only line in L) left-bounding edge in ZA(L)(`) and 1 6 3n = 3. Assume the statement is
true for n− 1.

`

r

`0

`1

Figure 9.3: At most three new left-bounding edges are created by adding r to A(L\{r}).

If no line from L intersects `, then all lines in L ∪ {`} are horizontal and there is at
most 1 < 3n left-bounding edge in ZA(L)(`). Else consider the rightmost line r from L

intersecting ` and the arrangement A(L \ {r}). By the induction hypothesis there are at
most 3n− 3 left-bounding edges in ZA(L\{r})(`). Adding r back adds at most three new
left-bounding edges: At most two edges (call them `0 and `1) of the rightmost cell of
ZA(L\{r})(`) are intersected by r and thereby split in two. Both of these two edges may be
left-bounding and thereby increase the number of left-bounding edges by at most two.
In any case, r itself contributes exactly one more left-bounding edge to that cell. The
line r cannot contribute a left-bounding edge to any cell other than the rightmost: to
the left of r, the edges induced by r form right-bounding edges only and to the right
of r all other cells touched by r (if any) are shielded away from ` by one of `0 or `1.
Therefore, the total number of left-bounding edges in ZA(L)(`) is bounded from above
by 3 + 3n− 3 = 3n. �

Corollary 9.8 The arrangement of n lines in R2 can be constructed in optimal O(n2)

time and space.
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Proof. Use the incremental construction described above. In Step i, for 1 6 i 6 n,
we do a linear search among i − 1 elements to �nd the starting face and then traverse
(part of) the zone of the line `i in the arrangement A({`1, . . . , `i−1}). By Theorem 9.7
the complexity of this zone and hence the time complexity of Step i altogether is O(i).
Overall we obtain

∑n
i=1 ci = O(n2) time (and space), for some constant c > 0, which is

optimal by Theorem 9.5. �

The corresponding bounds for hyperplane arrangements in Rd are Θ(nd) for the com-
plexity of a simple arrangement andO(nd−1) for the complexity of a zone of a hyperplane.

Exercise 9.9 For an arrangement A of a set of n lines in R2, let F :=
⋃
C is cell of AC

denote the union of the closure of all bounded cells. Show that the complexity
(number of vertices and edges of the arrangement lying on the boundary) of F is
O(n).

9.4 The Power of Duality

The real beauty and power of line arrangements becomes apparent in context of projective
point ↔ line duality. It is often convenient to assume that no two points in the primal
have the same x-coordinate so that no line de�ned by any two points is vertical (and
hence becomes an in�nite point in the dual). This degeneracy can be tested for by sorting
according to x-coordinate (in O(n logn) time) and resolved by rotating the whole plane
by some su�ciently small angle. In order to select the rotation angle it is enough to
determine the line of maximum absolute slope that passes through two points. Then we
can take, say, half of the angle between such a line and the vertical direction. As the
line of maximum slope through any given point can be found in linear time, the overall
maximum can be obtained in O(n2) time.

The following problems can be solved in O(n2) time and space by constructing the
dual arrangement.

General position test. Given n points in R2, are any three of them collinear? (Dual: do
three lines meet in a point?)

Minimum area triangle. Given n points in R2, what is the minimum area triangle spanned
by any three of them? For any vertex `∗ of the dual arrangement (primal: line ` through
two points p and q) �nd the closest point vertically above/below `∗ through which an
input line passes (primal: closest line below/above and parallel to ` that passes through
an input point). In this way one can �nd O(n2) candidate triangles by constructing
the arrangement of the n dual lines. For instance, maintain over the incremental con-
struction for each vertex a vertically closest line. The number of vertices to be updated
during insertion of a line ` corresponds to the complexity of the zone of ` in the arrange-
ment constructed so far. Therefore maintaining this information comes at no extra cost
asymptotically.
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Geometry: C&A 2014 9.5. Rotation Systems�Sorting all Angular Sequences

The smallest among those candidates can be determined by a straightforward mini-
mum selection (comparing the area of the corresponding triangles). Observe that vertical
distance is not what determines the area of the corresponding triangle but orthogonal
distance. However, the points that minimize these measures for any �xed line are the
same. . .

Exercise 9.10 A set P of n points in the plane is said to be in ε-general position for
ε > 0 if no three points of the form

p+ (x1,y1),q+ (x2,y2), r+ (x3,y3)

are collinear, where p,q, r ∈ P and |xi|, |yi| < ε, for i ∈ {1, 2, 3}. In words: P remains
in general position under changing point coordinates by less than ε each.

Give an algorithm with runtime O(n2) for checking whether a given point set P
is in ε-general position.

9.5 Rotation Systems�Sorting all Angular Sequences

Recall the notion of a combinatorial embedding from Chapter 2. It is speci�ed by
the circular order of edges along the boundary of each face or�equivalently, dually�
around each vertex. In a similar way we can also give a combinatorial description of the
geometry of a �nite point set P ⊂ R2 using its rotation system. This is nothing else but a
combinatorial embedding of the complete geometric (straight line) graph on P, speci�ed
by the circular order of edges around vertices.1

For a given set P of n points, it is trivial to construct the corresponding rotation
system in O(n2 logn) time, by sorting each of the n lists of neighbors independently.
The following theorem describes a more e�cient, in fact optimal, algorithm.

Theorem 9.11 Consider a set P of n points in the plane. For a point q ∈ P let cP(q)

denote the circular sequence of points from S \ {q} ordered counterclockwise around
q (in order as they would be encountered by a ray sweeping around q). The rotation
system of P, consisting of all cP(q), for q ∈ P, collectively can be obtained in O(n2)

time.

Proof. Consider the projective dual P∗ of P. An angular sweep around a point q ∈ P
in the primal plane corresponds to a traversal of the line q∗ from left to right in the
dual plane. (A collection of lines through a single point q corresponds to a collection of
points on a single line q∗ and slope corresponds to x-coordinate.) Clearly, the sequence of
intersection points along all lines in P∗ can be obtained by constructing the arrangement
in O(n2) time. In the primal plane, any such sequence corresponds to an order of the
remaining points according to the slope of the connecting line; to construct the circular

1As these graphs are not planar for |P| > 5, we do not have the natural dual notion of faces as in the
case of planar graphs.
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sequence of points as they are encountered around q, we have to split the sequence
obtained from the dual into those points that are to the left of q and those that are to
the right of q; concatenating both yields the desired sequence. �

Exercise 9.12 (Eppstein [1]) Describe an O(n2) time algorithm that given a set P of n
points in the plane �nds a subset of �ve points that form a strictly convex empty
pentagon (or reports that there is none if that is the case). Empty means that the
convex pentagon may not contain any other points of P.

Hint: For each p ∈ P discard all points to the left of p and consider the polygon
S(p) formed by p and the remaining points taken in circular order around p. Ex-
plain why it su�ces to check for all p whether S(p) has four vertices other than p
that form an empty convex quadrilateral. How do you check this in O(n2) time?

Remark: It was shown by Harborth [5] that every set of ten or more points in
general position contains a subset of �ve points that form a strictly convex empty
pentagon.

9.6 3-Sum

The 3-Sum problem is the following: Given a set S of n integers, does there exist a
three-tuple2 of elements from S that sum up to zero? By testing all three-tuples this
can obviously be solved in O(n3) time. If the tuples to be tested are picked a bit more
cleverly, we obtain an O(n2) algorithm.

Let (s1, . . . , sn) be the sequence of elements from S in increasing order. This sequence
can be obtained by sorting in O(n logn) time. Then we test the tuples as follows.

For i = 1, . . . ,n {
j = i, k = n.
While k > j {

If si + sj + sk = 0 then exit with triple si, sj, sk.
If si + sj + sk > 0 then k = k− 1 else j = j+ 1.

}
}

The runtime is clearly quadratic. Regarding the correctness observe that the following
is an invariant that holds at the start of every iteration of the inner loop: si+sx+sk < 0,
for all x ∈ {i, . . . , j− 1}, and si + sj + sx > 0, for all x ∈ {k+ 1, . . . ,n}.

Interestingly, until very recently this was the best algorithm known for 3-Sum. But
at FOCS 2014, Grønlund and Pettie [4] present a deterministic algorithm that solves
3-Sum in O(n2(log logn/ logn)2/3) time. They also give a bound of O(n3/2

√
logn) on

2That is, an element of S may be chosen twice or even three times, although the latter makes sense for
the number 0 only. :-)
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the decision tree complexity of 3-Sum. The big open question remains whether an
O(n2−ε) algorithm can be achieved. On the other hand, in some very restricted models
of computation�such as the linear decision tree model�3-Sum cannot be solved in
sub-quadratic time [2].

3-Sum hardness There is a whole class of problems that are equivalent to 3-Sum up to
sub-quadratic time reductions [3]; such problems are referred to as 3-Sum-hard.

De�nition 9.13 A problem P is 3-Sum-hard if and only if every instance of 3-Sum
of size n can be solved using a constant number of instances of P�each of O(n)

size�and o(n2) additional time.3

For instance, it is not hard to show that the following variation of 3-Sum�let us
denote it by 3-Sum◦�is 3-Sum hard: Given a set S of n integers, does there exist a
three-element subset of S whose elements sum up to zero?

Exercise 9.14 Show that 3-Sum◦ is 3-Sum hard.

As another example, consider the Problem GeomBase: Given n points on the three
horizontal lines y = 0, y = 1, and y = 2, is there a non-horizontal line that contains at
least three of them?

3-Sum can be reduced to GeomBase as follows. For an instance S = {s1, . . . , sn} of
3-Sum, create an instance P of GeomBase in which for each si there are three points in
P: (si, 0), (−si/2, 1), and (si, 2). If there are any three collinear points in P, there must
be one from each of the lines y = 0, y = 1, and y = 2. So suppose that p = (si, 0),
q = (−sj/2, 1), and r = (sk, 2) are collinear. The inverse slope of the line through p
and q is −sj/2−si

1−0
= −sj/2 − si and the inverse slope of the line through q and r is

sk+sj/2

2−1
= sk+ sj/2. The three points are collinear if and only if the two slopes are equal,

that is, −sj/2 − si = sk + sj/2 ⇐⇒ si + sj + sk = 0.

A very similar problem is General Position, in which one is given n arbitrary points
and has to decide whether any three are collinear. For an instance S of 3-Sum◦, create
an instance P of General Position by projecting the numbers si onto the curve y = x3,
that is, P = {(a,a3) |a ∈ S}.

Suppose three of the points, say, (a,a3), (b,b3), and (c, c3) are collinear. This is the
case if and only if the slopes of the lines through each pair of them are equal. (Observe

3In light of the recent results of Grønlund and Pettie one should probably write O(n2−ε) here. Anyway,
the reductions discussed here will be either linear or O(n logn) time.
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that a, b, and c are pairwise distinct.)

(b3 − a3)/(b− a) = (c3 − b3)/(c− b) ⇐⇒
b2 + a2 + ab = c2 + b2 + bc ⇐⇒

b = (c2 − a2)/(a− c) ⇐⇒
b = −(a+ c) ⇐⇒

a+ b+ c = 0 .

Minimum Area Triangle is a strict generalization of General Position and, therefore, also
3-Sum-hard.

In Segment Splitting/Separation, we are given a set of n line segments and have to
decide whether there exists a line that does not intersect any of the segments but splits
them into two non-empty subsets. To show that this problem is 3-Sum-hard, we can
use essentially the same reduction as for GeomBase, where we interpret the points along
the three lines y = 0, y = 1, and y = 2 as su�ciently small �holes�. The parts of the
lines that remain after punching these holes form the input segments for the Splitting
problem. Horizontal splits can be prevented by putting constant size gadgets somewhere
beyond the last holes, see the �gure below. The set of input segments for the segment

splitting problem requires sorting the points along each of the three horizontal lines,
which can be done in O(n logn) = o(n2) time. It remains to specify what �su�ciently
small� means for the size of those holes. As all input numbers are integers, it is not hard
to show that punching a hole of (x − 1/4, x + 1/4) around each input point x is small
enough.

In Segment Visibility, we are given a set S of n horizontal line segments and two
segments s1, s2 ∈ S. The question is: Are there two points, p1 ∈ s1 and p2 ∈ s2 which
can see each other, that is, the open line segment p1p2 does not intersect any segment
from S? The reduction from 3-Sum is the same as for Segment Splitting, just put s1
above and s2 below the segments along the three lines.

In Motion Planning, we are given a robot (line segment), some environment (modeled
as a set of disjoint line segments), and a source and a target position. The question is:
Can the robot move (by translation and rotation) from the source to the target position,
without ever intersecting the �walls� of the environment?

To show that Motion Planning is 3-Sum-hard, employ the reduction for Segment
Splitting from above. The three �punched� lines form the doorway between two rooms,
each modeled by a constant number of segments that cannot be split, similar to the
boundary gadgets above. The source position is in one room, the target position in the
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other, and to get from source to target the robot has to pass through a sequence of three
collinear holes in the door (suppose the doorway is su�ciently small compared to the
length of the robot).

Exercise 9.15 The 3-Sum' problem is de�ned as follows: given three sets S1,S2,S3 of
n integers each, are there a1 ∈ S1, a2 ∈ S2, a3 ∈ S3 such that a1 + a2 + a3 = 0?
Prove that the 3-Sum' problem and the 3-Sum problem as de�ned in the lecture
(S1 = S2 = S3) are equivalent, more precisely, that they are reducible to each other
in subquadratic time.

9.7 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now it
is time to distribute the prey. Both, of course, should get the same number of rubies
and the same number of diamonds. On the other hand, it would be a pity to completely
disintegrate the beautiful necklace. Hence they want to use as few cuts as possible to
achieve a fair gem distribution.

To phrase the problem in a geometric (and somewhat more general) setting: Given
two �nite sets R and D of points, construct a line that bisects both sets, that is, in either
halfplane de�ned by the line there are about half of the points from R and about half of
the points from D. To solve this problem, we will make use of the concept of levels in
arrangements.

De�nition 9.16 Consider an arrangement A(L) induced by a set L of n non-vertical
lines in the plane. We say that a point p is on the k-level in A(L) if there are at
most k− 1 lines below and at most n− k lines above p. The 1-level and the n-level
are also referred to as lower and upper envelope, respectively.

Figure 9.4: The 3-level of an arrangement.

Another way to look at the k-level is to consider the lines to be real functions; then the
lower envelope is the pointwise minimum of those functions, and the k-level is de�ned
by taking pointwise the kth-smallest function value.
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Theorem 9.17 Let R,D ⊂ R2 be �nite sets of points. Then there exists a line that
bisects both R and D. That is, in either open halfplane de�ned by ` there are no
more than |R|/2 points from R and no more than |D|/2 points from D.

Proof. Without loss of generality suppose that both |R| and |D| are odd. (If, say, |R| is
even, simply remove an arbitrary point from R. Any bisector for the resulting set is also
a bisector for R.) We may also suppose that no two points from R ∪ D have the same
x-coordinate. (Otherwise, rotate the plane in�nitesimally.)

Let R∗ and D∗ denote the set of lines dual to the points from R and D, respectively.
Consider the arrangement A(R∗). The median level of A(R∗) de�nes the bisecting lines
for R. As |R| = |R∗| is odd, both the leftmost and the rightmost segment of this level
are de�ned by the same line `r from R∗, the one with median slope. Similarly there is a
corresponding line `d in A(D∗).

Since no two points from R∪D have the same x-coordinate, no two lines from R∗∪D∗
have the same slope, and thus `r and `d intersect. Consequently, being piecewise linear
continuous functions, the median level of A(R∗) and the median level of A(D∗) intersect
(see Figure 9.5 for an example). Any point that lies on both median levels corresponds
to a primal line that bisects both point sets simultaneously. �

Figure 9.5: An arrangement of 3 green lines (solid) and 3 blue lines (dashed) and
their median levels (marked bold on the right hand side).

How can the thieves use Theorem 9.17? If they are smart, they drape the necklace
along some convex curve, say, a circle. Then by Theorem 9.17 there exists a line that
simultaneously bisects the set of diamonds and the set of rubies. As any line intersects
the circle at most twice, the necklace is cut at most twice. It is easy to turn the proof
given above into an O(n2) algorithm to construct a line that simultaneously bisects both
sets.

You can also think of the two point sets as a discrete distribution of a ham sandwich
that is to be cut fairly, that is, in such a way that both parts have the same amount of
ham and the same amount of bread. That is where the name �ham sandwich cut� comes
from. The theorem generalizes both to higher dimension and to more general types of
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measures (here we study the discrete setting only where we simply count points). These
generalizations can be proven using the Borsuk-Ulam Theorem, which states that any
continuous map from Sd to Rd must map some pair of antipodal points to the same
point. For a proof of both theorems see, for instance, Matou²ek's book [8].

Theorem 9.18 Let P1, . . . ,Pd ⊂ Rd be �nite sets of points. Then there exists a hy-
perplane H that simultaneously bisects all of P1, . . . ,Pd. That is, in either open
halfspace de�ned by H there are no more than |Pi|/2 points from Pi, for every
i ∈ {1, . . . ,d}.

This implies that the thieves can fairly distribute a necklace consisting of d types of
gems using at most d cuts.

In the plane, a ham sandwich cut can be found in linear time using a sophisticated
prune and search algorithm by Lo, Matou²ek and Steiger [7]. But in higher dimension,
the algorithmic problem gets harder. In fact, already for R3 the complexity of �nding a
ham sandwich cut is wide open: The best algorithm known, from the same paper by Lo
et al. [7], has runtime O(n3/2 log2 n/ log∗ n) and no non-trivial lower bound is known.
If the dimension d is not �xed, it is both NP-hard and W[1]-hard4 in d to decide the
following question [6]: Given d ∈ N, �nite point sets P1, . . . ,Pd ⊂ Rd, and a point
p ∈ ⋃di=1 Pi, is there a ham sandwich cut through p?

Exercise 9.19 The goal of this exercise is to develop a data structure for halfspace
range counting.

a) Given a set P ⊂ R2 of n points in general position, show that it is possible to
partition this set by two lines such that each region contains at most dn

4
e points.

b) Design a data structure of size O(n), which can be constructed in time O(n logn)

and allows you, for any halfspace h, to output the number of points |P ∩ h| of P
contained in this halfspace h in time O(nα), for some 0 < α < 1.

Exercise 9.20 Prove or disprove the following statement: Given three �nite sets A,B,C
of points in the plane, there is always a circle or a line that bisects A, B and C
simultaneously (that is, no more than half of the points of each set are inside or
outside the circle or on either side of the line, respectively).

Questions

39. How can one construct an arrangement of lines in R2? Describe the incremen-
tal algorithm and prove that its time complexity is quadratic in the number of lines
(incl. statement and proof of the Zone Theorem).

4Essentially this means that it is unlikely to be solvable in time O(f(d)p(n)), for an arbitrary function
f and a polynomial p.
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40. How can one test whether there are three collinear points in a set of n given
points in R2? Describe an O(n2) time algorithm.

41. How can one compute the minimum area triangle spanned by three out of n
given points in R2? Describe an O(n2) time algorithm.

42. What is a ham sandwich cut? Does it always exist? How to compute it?
State and prove the theorem about the existence of a ham sandwich cut in R2 and
describe an O(n2) algorithm to compute it.

43. Is there a subquadratic algorithm for General Position? Explain the term
3-Sum hard and its implications and give the reduction from 3-Sum to General
Position.

44. Which problems are known to be 3-Sum-hard? List at least three problems
(other than 3-Sum) and brie�y sketch the corresponding reductions.
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