
Chapter 2. Plane Embeddings Geometry: C&A 2014

2.5 Compact straight-line drawings

As a next step we consider plane embeddings in the geometric setting, where every edge
is drawn as a straight-line segment. A classical theorem of Wagner and Fáry states that
this is not a restriction in terms of plane embeddability.

Theorem 2.31 (Fáry [6], Wagner [21]) Every planar graph has a plane straight-line em-
bedding (that is, it is isomorphic to a plane straight-line graph).

Although this theorem has a nice inductive proof, we will not prove it here. Instead we
will prove a stronger statement that implies Theorem 2.31.

A very nice property of straight-line embeddings is that they are easy to represent:
We need to store points/coordinates for the vertices only. From an algorithmic and com-
plexity point of view the space needed by such a representation is important, because
it appears in the input and output size of algorithms that work on embedded graphs.
While the Fáry-Wagner Theorem guarantees the existence of a plane straight-line em-
bedding for every planar graph, it does not provide bounds on the size of the coordinates
used in the representation. But the following strengthening provides such bounds, by
describing an algorithm that embeds (without crossings) a given planar graph on a linear
size integer grid.

Theorem 2.32 (de Fraysseix, Pach, Pollack [8]) Every planar graph on n > 3 vertices has
a plane straight-line drawing on the (2n− 3)× (n− 1) integer grid.

Canonical orderings. The key concept behind the algorithm is the notion of a canonical
ordering, which is a vertex order that allows to construct a plane drawing in a natural
(hence canonical) way. Reading it backwards one may think of a shelling or peeling order
that destructs the graph vertex by vertex from the outside. A canonical ordering also
provides a succinct representation for the combinatorial embedding.

De�nition 2.33 A plane graph is internally triangulated if it is biconnected and every
bounded face is a (topological) triangle. Let G be an internally triangulated plane
graph and C◦(G) its outer cycle. A permutation π = (v1, v2, . . . , vn) of V(G) is a
canonical ordering for G, if

(1) Gk is internally triangulated, for all k ∈ {3, . . . ,n};

(2) v1v2 is on the outer cycle C◦(Gk) of Gk, for all k ∈ {3, . . . ,n};

(3) vk+1 is located in the outer face of Gk and its neighbors appear consecutively
along C◦(Gk), for all k ∈ {3, . . . ,n− 1};

where Gk is the subgraph of G induced by v1, . . . , vk.
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(b) G8.

Figure 2.18: An internally triangulated plane graph and a canonical order for it.

Figure 2.18 shows an example. Note that there are permutations that do not corre-
spond to a canonical order: for instance, when choosing the vertex 4 as the eighth vertex
instead of 8 in Figure 2.18b the graph G8 is not biconnected (1 is a cut-vertex).

Exercise 2.34 (a) Compute a canonical ordering for the following internally trian-
gulated plane graphs:

(b) Give a family of internally triangulated plane graphs Gn on n = 2k vertices
with at least (n/2)! canonical orderings.

Exercise 2.35 (a) Describe a plane graph G with n vertices that can be embedded
(while preserving the outer face) on a grid of size (2n/3 − 1) × (2n/3 − 1) but
not on a smaller grid.

(b) Can you draw G on a smaller grid if you are allowed to change the embed-
ding?
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Theorem 2.36 For every internally triangulated plane graph G and every edge {v1, v2}
on its outer face, there exists a canonical ordering for G that starts with v1, v2.
Moreover, such an ordering can be computed in linear time.

Proof. Induction on n, the number of vertices. For a triangle, any order su�ces and so
the statement holds. Hence consider an internally triangulated plane graph G = (V,E)

on n > 4 vertices. We claim that it is enough to select a vertex vn /∈ {v1, v2} on C◦(G)

that is not incident to a chord of C◦(G).
First observe that G is plane and vn ∈ C◦(G) and so all neighbors of vn in G must

appear on the outer face of Gn−1 = G\ {vn}. Consider the circular sequence of neighbors
around vn in G and break it into a linear sequence u1, . . . ,um, for some m > 2, that
starts and ends with the neighbors of vn in C◦(G). As G is internally triangulated, each
of the bounded faces spanned by vn,ui,ui+1, for i ∈ {i, . . . ,m − 1}, is a triangle and
hence {ui,ui+1} ∈ E. This implies (3) for k = n. Properties (1) and (2) hold trivially
(by assumption) in that case. In order to complete the ordering inductively we need to
show that Gn−1 is also internally triangulated.

As Gn−1 is a subgraph of G, which is internally triangulated, it su�ces to show that
Gn−1 is biconnected. The outer cycle C◦(Gn−1) of Gn−1 is obtained from C◦(G) by
removing vn and replacing it with the (possibly empty) sequence u2, . . . ,um−1. As vn is
not incident to a chord of C◦(G) (and so neither of u2, . . . ,um−1 appeared along C◦(G)

already), the resulting sequence forms a cycle, indeed. Add a new vertex v in the outer
face of Gn−1 and connect v to every vertex of C◦(Gn−1) to obtain a maximal planar
graph H ⊃ Gn−1. By Theorem 2.26 H is 3-connected and so Gn−1 is biconnected, as
desired. This also completes the proof of the initial claim.

It remains to show that we can always �nd such a vertex vn /∈ {v1, v2} on C◦(G) that
is not incident to a chord of C◦(G). If C◦(G) does not have any chord, this is obvious,
because every cycle has at least three vertices, one of which is neither v1 nor v2. So
suppose that C◦(G) has a chord c. The endpoints of c split C◦(G) into two paths, one
of which does not have v1 nor v2 as an internal vertex. Among all possible chords of
C◦(G) select c such that this path has minimal length. (It has always at least two edges,
because there is always at least one vertex �behind� a chord.) Then by de�nition of c this
path is an induced path in G and none of its (at least one) interior vertices is incident
to a chord of C◦(G), because such a chord would cross c. So we can select vn from these
vertices. By the way the path is selected with respect to c, this procedure does not select
v1 nor v2.

Regarding the runtime bound, we maintain the following information for each vertex
v: whether it has been chosen already, whether it is on the outer face of the current
graph, and the number of incident chords with respect to the current outer cycle. Given
a combinatorial embedding of G, it is straighforward to initialize this information in
linear time. (Every edge is considered at most twice, once for each endpoint on the outer
face.)

When removing a vertex, there are two cases: Either vn has two neighbors u1 and u2

only (Figure 2.19a), in which case the edge u1u2 ceases to be a chord. Thus, the chord
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count for u1 and u2 has to be decremented by one. Otherwise, there arem > 3 neighbors
u1, . . . ,nm (Figure 2.19b) and (1) all vertices u2, . . . ,um−1 are new on the outer cycle,
and (2) every edge incident to ui, for i ∈ {2, . . . ,k − 1}, and some other vertex on the
outer cycle other than ui−1 or ui+1 is a new chord (and the corresponding counters at
the endpoints have to by incremented by one).

vn

u1
u2

C◦(G)

(a)

vn

u1
u6

C◦(G)

(b)

Figure 2.19: Processing a vertex when computing a canonical ordering.

During the course of the algorithm every vertex appears once as a new vertex on the
outer face. At this point all incident edges are examined. Overall, every edge is inspected
at most twice�once for each endpoint�which takes linear time by Corollary 2.5. �

Using one of the linear time planarity testing algorithms, we can obtain a combina-
torial embedding for a given maximal planar graph G. As every maximal plane graph
is internally triangulated, we can then use Theorem 2.36 to provide us with a canonical
ordering for G, in overall linear time.

Corollary 2.37 Every maximal planar graph admits a canonical ordering. Moreover,
such an ordering can be computed in linear time. �

As simple as they may appear, canonical orderings are a powerful and versatile tool
to work with plane graphs. As an example, consider the following partitioning theorem.

Theorem 2.38 (Schnyder [18]) For every maximal planar graph G on at least three ver-
tices and every face f of G, the multigraph obtained from G by doubling the (three)
edges of f can be partitioned into three spanning trees.

Exercise 2.39 Prove Theorem 2.38. Hint: Take a canonical ordering and build one
tree by taking for every vertex vk the edge to its �rst neighbor on the outer cycle
C◦(Gk−1).

Of a similar �avor is the following open problem, for which only partial answers for
speci�c types of point sets are known [2].

39



Chapter 2. Plane Embeddings Geometry: C&A 2014

Problem 2.40 (In memoriam Ferran Hurtado (1951�2014))
Can every complete geometric graph on n = 2k vertices (the complete straight line graph
on a set of n points in general position) be partitioned into k plane spanning trees?

P(v3) = (1, 1)

P(v2) = (2, 0)P(v1) = (0, 0)

The shift-algorithm. Let (v1, . . . , vn) be a canonical or-
dering. The general plan is to construct an embedding
by inserting vertices in this order, starting from the
triangle P(v1) = (0, 0), P(v3) = (1, 1), P(v2) = (2, 0).
At each step, some vertices will be shifted to the right,
making room for the edges to the freshly inserted vertex. For each vertex vi already em-
bedded, maintain a set L(vi) of vertices that move rigidly together with vi. Initially,
L(vi) = {vi}, for 1 6 i 6 3.

Ensure that the following invariants hold after Step k (that is, after vk has been
inserted):

(i) P(v1) = (0, 0), P(v2) = (2k− 4, 0);

(ii) The x-coordinates of the points on C◦(Gk) = (w1, . . . ,wt) are strictly increasing
(in this order)4;

(iii) each edge of C◦(Gk) is drawn as a straight-line segment with slope ±1.
Clearly these invariants hold for G3, embedded as described above. Invariant (i) implies
that after Step n we have P(v2) = (2n − 4, 0), while (iii) implies that the Manhattan
distance5 between any two points on C◦(Gk) is even.

Idea: put vk+1 at µ(wp,wq), where wp, . . . ,wq are its neighbors on C◦(Gk) (recall
that they appear consecutively along C◦(Gk) by de�nition of a canonical ordering), where

µ((xp,yp), (xq,yq)) =
1
2
(xp − yp + xq + yq,−xp + yp + xq + yq)

is the point of intersection between the line `1 : y = x − xp + yp of slope 1 through
wp = (xp,yp) and the line `2 : y = xq − x+ yq of slope −1 through wq = (xq,yq).

Proposition 2.41 If the Manhattan distance between wp and wq is even, then µ(wp,wq)
is on the integer grid.

Proof. By Invariant (ii) we know that xp < xq. Suppose without loss of generality
that yp 6 yq. The Manhattan distance d of wp and wq is xq − xp + yq − yp, which by
assumption is an even number. Adding the even number 2xp to d yields the even number
xq + xp + yq − yp, half of which is the x-coordinate of µ((xp,yp), (xq,yq)). Adding the

4The notation is a bit sloppy here because both t and the wi in general depend on k. So in principle
we should write wki instead of wi. But as the k would just make a constant appearance throughout, we
omit it to avoid index clutter.

5The Manhattan distance of two points (x1,y1) and (x2,y2) is |x2 − x1| + |y2 − y1|.
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even number 2yp to d yields the even number xq − xp + yq + yp, half of which is the
y-coordinate of µ((xp,yp), (xq,yq)). �

After Step n we have P(vn) = (n− 2,n− 2), because vn is a neighbor of both v1 and v2.
However, P(vk+1) may not �see� all of wp, . . . ,wq, in case that the slope of wpwp+1 is 1
and/or the slope of wq−1wq is −1 (Figure 2.20).

wp

wq

vk+1

(a)

wp

wq

vk+1

(b)

Figure 2.20: (a) The new vertex vk+1 is adjacent to all of wp, . . . ,wq. If we place
vk+1 at µ(wp,wq), then some edges may overlap, in case that wp+1 lies
on the line of slope 1 through wp or wq−1 lies on the line of slope −1
through wq; (b) shifting wp+1, . . . ,wq−1 by one and wq, . . . ,wt by two
units to the right solves the problem.

In order to resolve these problems we shift some points around so that after the shift
wp+1 does not lie on the line of slope 1 through wp and wq−1 does not lie on the line of
slope −1 through wq. The process of inserting vk+1 then looks as follows.

1. Shift
⋃q−1

i=p+1 L(wi) to the right by one unit.

2. Shift
⋃t
i=q L(wi) to the right by two units.

3. P(vk+1) := µ(wp,wq).

4. L(vk+1) := {vk} ∪
⋃q−1

i=p+1 L(wi).

Observe that the Manhattan distance betweenwp andwq remains even, because the shift
increases their x-di�erence by two and leaves the y-coordinates unchanged. Therefore
by Proposition 2.41 the vertex vk+1 is embedded on the integer grid.

The slopes of the edges wpwp+1 and wq−1wq (might be just a single edge, in case
that p+1 = q) become < 1 in absolute value, whereas the slopes of all other edges along
the outer cycle remain ±1. As all edges from vk+1 to wp+1, . . . ,wq−1 have slope > 1 in
absolute value, and the edges vk+1wp and vk+1wq have slope ±1, each edge vk+1wi, for
i ∈ {p, . . . ,q} intersects the outer cycle in exactly one point, which is wi. In other words,
adding all edges from vk+1 to its neighbors in Gk as straight-line segments results in a
plane drawing.

Next we argue that the invariants (i)�(iii) are maintained. For (i) note that we start
shifting with wp+1 only so that even in case that v1 is a neighbor of vk+1, it is never
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shifted. On the other hand, v2 is always shifted by two, because we shift every vertex
starting from (and including) wq. Clearly both the shifts and the insertion of vk+1

maintain the strict order along the outer cycle, and so (ii) continues to hold. Finally,
regarding (iii) note that the edges wpwp+1 and wq−1wq (possibly this is just a single
edge) are the only edges on the outer cycle whose slope is changed by the shift. But these
edges do not appear on C◦(Gk+1) anymore. The two edges vk+1wp and vk+1wq incident
to the new vertex vk+1 that appear on C◦(Gk+1) have slope 1 and −1, respectively. So
all of (i)�(iii) are invariants of the algorithm, indeed.

So far we have argued about the shift with respect to vertices on the outer cycle of
Gk only. To complete the proof of Theorem 2.32 it remains to show that the drawing
remains plane under shifts also in its interior part.

Lemma 2.42 Let Gk, 3 6 k 6 n, be straight-line grid embedded as described, C◦(Gk) =

(w1, . . . ,wt), and let δ1 6 . . . 6 δt be non-negative integers. If for each i, we shift
L(wi) by δi to the right, then the resulting straight-line drawing is plane.

Proof. Induction on k. For G3 this is obvious. Let vk = w`, for some 1 < ` < t.
Construct a delta sequence ∆ for Gk−1 as follows. If vk has only two neighbors in Gk,
then C◦(Gk−1) = (w1, . . . ,w`−1,w`+1, . . . ,wt) and we set ∆ = δ1, . . . , δ`−1, δ`+1, . . . , δt.
Otherwise, C◦(Gk−1) = (w1, . . . ,w`−1 = u1, . . . ,um = w`+1, . . . ,wt), where u1, . . . ,um
are the m > 3 neighbors of vk in Gk. In this case we set

∆ = δ1, . . . , δ`−1, δ`, . . . , δ`︸ ︷︷ ︸
m times

, δ`+1, . . . , δt .

Clearly, ∆ is monotonely increasing and by the inductive assumption a correspondingly
shifted drawing of Gk−1 is plane. When adding vk and its incident edges back, the
drawing remains plane: All vertices u2, . . . ,um−1 (possibly none) move rigidly with (by
exactly the same amount as) vk by construction. Stretching the edges of the chain
w`−1,w`,w`+1 by moving w`−1 to the left and/or w`+1 to the right cannot create any
crossings. �

Linear time. (This part was not covered in the lecture.) The challenge in imple-
menting the shift algorithm e�ciently lies in the eponymous shift operations, which
modify the x-coordinates of potentially many vertices. In fact, it is not hard to see
that a naive implementation�which keeps track of all coordinates explicitly�may use
quadratic time. De Fraysseix et al. described an implmentation of the shift algorithm
that uses O(n logn) time. Then Chrobak and Payne [5] observed how to improve the
runtime to linear, using the following ideas.

Recall that P(vk+1) = (xk+1,yk+1), where

xk+1 =
1
2
(xp − yp + xq + yq) and

yk+1 =
1
2
(−xp + yp + xq + yq) =

1
2
((xq − xp) + yp + yq) . (2.43)
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Thus,

xk+1 − xp =
1
2
((xq − xp) + yq − yp) . (2.44)

⇒We need the y-coordinates of wp and wq together with the relative x-position (o�set)
of wp and wq only in to determine the y-coordinate of vk+1 and its o�set to wp.

Maintain the outer cycle as a rooted binary tree T , with root v1. For each node v of
T , the left child is the �rst vertex covered by insertion of v (if any), that is, wp+1 in
the terminology from above (if p+ 1 6= q), whereas the right child of v is the next node
along the outer cycle (if any; either along the current outer cycle or along the one at the
point where both points were covered together). See Figure 2.21 for an example.

(a)

vk+1

(b)

Figure 2.21: Maintaining the binary tree representation when inserting a new vertex
vk+1. Red (dashed) arrows point to left children, blue (solid) arrows
point to right children.

At each node v of T we also store its x-o�set dx(v) with respect to the parent node.
For the root v1 of the tree set dx(v1) = 0. In this way, a whole subtree (and, thus, a
whole set L(·)) can be shifted by changing a single o�set entry at its root.

Initially, dx(v1) = 0, dx(v2) = dx(v3) = 1, y(v1) = y(v2) = 0, y(v3) = 1, left(v1) =

left(v2) = left(v3) = 0, right(v1) = v3, right(v2) = 0, and right(v3) = v2.
Inserting a vertex vk+1 works as follows. As before, let w1, . . . ,wt denote the vertices

on the outer cycle C◦(Gk) and wp, . . . ,wq be the neighbors of vk+1.

1. Increment dx(wp+1) and dx(wq) by one. (This implements the shift.)

2. Compute ∆pq =
∑q
i=p+1 dx(wi). (This is the total o�set between wp and wq.)

3. Set dx(vk) ← 1
2
(∆pq + y(wq) − y(wp)) and y(vk) ← 1

2
(∆pq + y(wq) + y(wp)).

(This is exactly what we derived in (2.43) and (2.44).)

4. Set right(wp)← vk and right(vk)← wq. (Update the current outer cycle.)

5. If p+1 = q, then set left(vk)← 0; else set left(vk)← wp+1 and right(wq−1)← 0.
(Update the part that is covered by insertion of vk+1.)
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6. Set dx(wq)← ∆pq−dx(vk) and�unless p+1 = q�set dx(wp+1)← dx(wp+1)−

dx(vk). (Update the o�sets according to the changes in the previous two steps.)

Observe that the only step that possibly cannot be executed in constant time is Step 2.
But all vertices but the last vertex wq for which we sum the o�sets are covered by the
insertion of vk+1. As every vertex can be covered at most once, the overall complexity
of this step during the algorithm is linear. Therefore, this �rst phase of the algorithm
can be completed in linear time.

In a second phase, the �nal x-coordinates can be computed from the o�sets by a
single recursive pre-order traversal of the tree. The (pseudo�)code given below is to be
called with the root vertex v1 and an o�set of zero. Clearly this yields a linear time
algorithm overall.

compute_coordinate(Vertex v, Offset d) {

if (v == 0) return;

x(v) = dx(v) + d;

compute_coordinate(left(v), x(v));

compute_coordinate(right(v), x(v));

}

Remarks. From a geometric complexity point of view, Theorem 2.32 provides very good
news for planar graphs in a similar way that the Euler Formula does from a combinatorial
complexity point of view. Euler's Formular tells us that we can obtain a combinatorial
representation (for instance, as a DCEL) of any plane graph using O(n) space, where n
is the number of vertices.

Now the shift algorithm tells us that for any planar graph we can even �nd a geometric
plane (straight-line) representation using O(n) space. In addition to the combinatorial
information, we only have to store 2n numbers from the range {0, 1, . . . , 2n− 4}.

When we make such claims regarding space complexity we implicitly assume the so-
called word RAM model. In this model each address in memory contains a word of b
bits, which means that it can be used to represent any integer from {0, . . . , 2b − 1}. One
also assumes that b is su�ciently large, for instance, in our case b > logn.

There are also di�erent models such as the bit complexity model, where one is charged
for every bit used to store information. In our case that would already incur an additional
factor of logn for the combinatorial representation: for instance, for each halfedge we
store its endpoint, which is an index from {1, . . . ,n}.

Questions

1. What is an embedding? What is a planar/plane graph? Give the de�nitions
and explain the di�erence between planar and plane.

2. How many edges can a planar graph have? What is the average vertex degree
in a planar graph? Explain Euler's formula and derive your answers from it.
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3. How can plane graphs be represented on a computer? Explain the DCEL data
structure and how to work with it.

4. How can a given plane graph be (topologically) triangulated e�ciently? Ex-
plain what it is, including the di�erence between topological and geometric trian-
gulation. Give a linear time algorithm, for instance, as in Theorem 2.25.

5. What is a combinatorial embedding? When are two combinatorial embeddings
equivalent? Which graphs have a unique combinatorial embedding? Give the
de�nitions, explain and prove Whitney's Theorem.

6. What is a canonical ordering and which graphs admit such an ordering? For
a given graph, how can one �nd a canonical ordering e�ciently? Give the
de�nition. State and prove Theorem 2.36.

7. Which graphs admit a plane embedding using straight line edges? Can one
bound the size of the coordinates in such a representation? State and prove
Theorem 2.32.
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