
Chapter 4

Convex Hull

There exists an incredible variety of point sets and polygons. Among them, some have
certain properties that make them �nicer� than others in some respect. For instance,
look at the two polygons shown below.

(a) A convex polygon. (b) A non-convex polygon.

Figure 4.1: Examples of polygons: Which do you like better?

As it is hard to argue about aesthetics, let us take a more algorithmic stance. When
designing algorithms, the polygon shown on the left appears much easier to deal with
than the visually and geometrically more complex polygon shown on the right. One
particular property that makes the left polygon nice is that one can walk between any
two vertices along a straight line without ever leaving the polygon. In fact, this statement
holds true not only for vertices but for any two points within the polygon. A polygon
or, more generally, a set with this property is called convex.

De�nition 4.1 A set P ⊆ Rd is convex if pq ⊆ P, for any p,q ∈ P.
An alternative, equivalent way to phrase convexity would be to demand that for every
line ` ⊂ Rd the intersection `∩P be connected. The polygon shown in Figure 4.1b is not
convex because there are some pairs of points for which the connecting line segment is not
completely contained within the polygon. An immediate consequence of the de�nition
is the following
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Observation 4.2 For any family (Pi)i∈I of convex sets, the intersection
⋂
i∈I Pi is con-

vex.

Indeed there are many problems that are comparatively easy to solve for convex sets
but very hard in general. We will encounter some particular instances of this phenomenon
later in the course. However, not all polygons are convex and a discrete set of points is
never convex, unless it consists of at most one point only. In such a case it is useful to
make a given set P convex, that is, approximate P with or, rather, encompass P within
a convex set H ⊇ P. Ideally, H di�ers from P as little as possible, that is, we want H to
be a smallest convex set enclosing P.

At this point let us step back for a second and ask ourselves whether this wish makes
sense at all: Does such a set H (always) exist? Fortunately, we are on the safe side
because the whole space Rd is certainly convex. It is less obvious, but we will see below
that H is actually unique. Therefore it is legitimate to refer to H as the smallest convex
set enclosing P or�shortly�the convex hull of P.

4.1 Convexity

In this section we will derive an algebraic characterization of convexity. Such a charac-
terization allows to investigate convexity using the machinery from linear algebra.

Consider P ⊂ Rd. From linear algebra courses you should know that the linear hull

lin(P) :=
{
q
∣∣∣ q =

∑
λipi ∧ ∀ i : pi ∈ P, λi ∈ R

}
is the set of all linear combinations of P (smallest linear subspace containing P). For
instance, if P = {p} ⊂ R2 \ {0} then lin(P) is the line through p and the origin.

Similarly, the a�ne hull

a�(P) :=
{
q
∣∣∣ q =

∑
λipi ∧

∑
λi = 1 ∧ ∀ i : pi ∈ P, λi ∈ R

}
is the set of all a�ne combinations of P (smallest a�ne subspace containing P). For
instance, if P = {p,q} ⊂ R2 and p 6= q then a�(P) is the line through p and q.

It turns out that convexity can be described in a very similar way algebraically, which
leads to the notion of convex combinations.

Proposition 4.3 A set P ⊆ Rd is convex if and only if
∑n
i=1 λipi ∈ P, for all n ∈ N,

p1, . . . ,pn ∈ P, and λ1, . . . , λn > 0 with
∑n
i=1 λi = 1.

Proof. �⇐�: obvious with n = 2.
�⇒�: Induction on n. For n = 1 the statement is trivial. For n > 2, let pi ∈ P

and λi > 0, for 1 6 i 6 n, and assume
∑n
i=1 λi = 1. We may suppose that λi > 0,

for all i. (Simply omit those points whose coe�cient is zero.) We need to show that∑n
i=1 λipi ∈ P.
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De�ne λ =
∑n−1

i=1 λi and for 1 6 i 6 n − 1 set µi = λi/λ. Observe that µi > 0
and

∑n−1

i=1 µi = 1. By the inductive hypothesis, q :=
∑n−1

i=1 µipi ∈ P, and thus by
convexity of P also λq + (1 − λ)pn ∈ P. We conclude by noting that λq + (1 − λ)pn =

λ
∑n−1

i=1 µipi + λnpn =
∑n
i=1 λipi. �

De�nition 4.4 The convex hull conv(P) of a set P ⊆ Rd is the intersection of all convex
supersets of P.

At �rst glance this de�nition is a bit scary: There may be a whole lot of supersets for
any given P and it not clear that taking the intersection of all of them yields something
sensible to work with. However, by Observation 4.2 we know that the resulting set
is convex, at least. The missing bit is provided by the following proposition, which
characterizes the convex hull in terms of exactly those convex combinations that appeared
in Proposition 4.3 already.

Proposition 4.5 For any P ⊆ Rd we have

conv(P) =

{
n∑
i=1

λipi

∣∣∣∣∣ n ∈ N ∧

n∑
i=1

λi = 1 ∧ ∀i ∈ {1, . . . ,n} : λi > 0 ∧ pi ∈ P
}

.

The elements of the set on the right hand side are referred to as convex combinations
of P.
Proof. �⊇�: Consider a convex set C ⊇ P. By Proposition 4.3 (only-if direction) the
right hand side is contained in C. As C was arbitrary, the claim follows.

�⊆�: Denote the set on the right hand side by R. Clearly R ⊇ P. We show that R
forms a convex set. Let p =

∑n
i=1 λipi and q =

∑n
i=1 µipi be two convex combinations.

(We may suppose that both p and q are expressed over the same pi by possibly adding
some terms with a coe�cient of zero.)

Then for λ ∈ [0, 1] we have λp + (1 − λ)q =
∑n
i=1(λλi + (1 − λ)µi)pi ∈ R, as

λλi︸︷︷︸
>0

+(1 − λ)︸ ︷︷ ︸
>0

µi︸︷︷︸
>0

> 0, for all 1 6 i 6 n, and
∑n
i=1(λλi+(1−λ)µi) = λ+(1−λ) = 1. �

In linear algebra the notion of a basis in a vector space plays a fundamental role. In
a similar way we want to describe convex sets using as few entities as possible, which
leads to the notion of extremal points, as de�ned below.

De�nition 4.6 The convex hull of a �nite point set P ⊂ Rd forms a convex polytope.
Each p ∈ P for which p /∈ conv(P \ {p}) is called a vertex of conv(P). A vertex of
conv(P) is also called an extremal point of P. A convex polytope in R2 is called a
convex polygon.

Essentially, the following proposition shows that the term vertex above is well de�ned.

Proposition 4.7 A convex polytope in Rd is the convex hull of its vertices.
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Proof. Let P = {p1, . . . ,pn}, n ∈ N, such that without loss of generality p1, . . . ,pk
are the vertices of P := conv(P). We prove by induction on n that conv(p1, . . . ,pn) ⊆
conv(p1, . . . ,pk). For n = k the statement is trivial.

For n > k, pn is not a vertex of P and hence pn can be expressed as a convex
combination pn =

∑n−1

i=1 λipi. Thus for any x ∈ P we can write x =
∑n
i=1 µipi =∑n−1

i=1 µipi+µn
∑n−1

i=1 λipi =
∑n−1

i=1 (µi+µnλi)pi. As
∑n−1

i=1 (µi+µnλi) = 1, we conclude
inductively that x ∈ conv(p1, . . . ,pn−1) ⊆ conv(p1, . . . ,pk). �

4.2 Classical Theorems for Convex Sets

Next we will discuss a few fundamental theorems about convex sets in Rd. The proofs
typically use the algebraic characterization of convexity and then employ some techniques
from linear algebra.

Theorem 4.8 (Radon [8]) Any set P ⊂ Rd of d + 2 points can be partitioned into two
disjoint subsets P1 and P2 such that conv(P1) ∩ conv(P2) 6= ∅.
Proof. Let P = {p1, . . . ,pd+2}. No more than d + 1 points can be a�nely independent
in Rd. Hence suppose without loss of generality that pd+2 can be expressed as an a�ne
combination of p1, . . . ,pd+1, that is, there exist λ1, . . . , λd+1 ∈ R with

∑d+1

i=1 λi = 1
and

∑d+1

i=1 λipi = pd+2. Let P1 be the set of all points pi for which λi is positive and
let P2 = P \ P1. Then setting λd+2 = −1 we can write

∑
pi∈P1 λipi =

∑
pi∈P2 −λipi,

where all coe�cients on both sides are non-negative. Renormalizing by µi = λi/µ and
νi = λi/ν, where µ =

∑
pi∈P1 λi and ν = −

∑
pi∈P2 λi, yields convex combinations∑

pi∈P1 µipi =
∑
pi∈P2 νipi that describe a common point of conv(P1) and conv(P2). �

Theorem 4.9 (Helly) Consider a collection C = {C1, . . . ,Cn} of n > d+1 convex subsets
of Rd, such that any d+1 pairwise distinct sets from C have non-empty intersection.
Then also the intersection

⋂n
i=1Ci of all sets from C is non-empty.

Proof. Induction on n. The base case n = d + 1 holds by assumption. Hence suppose
that n > d + 2. Consider the sets Di =

⋂
j6=iCj, for i ∈ {1, . . . ,n}. As Di is an

intersection of n − 1 sets from C, by the inductive hypothesis we know that Di 6= ∅.
Therefore we can �nd some point pi ∈ Di, for each i ∈ {1, . . . ,n}. Now by Theorem 4.8
the set P = {p1, . . . ,pn} can be partitioned into two disjoint subsets P1 and P2 such that
conv(P1) ∩ conv(P2) 6= ∅. We claim that any point p ∈ conv(P1) ∩ conv(P2) also lies in⋂n
i=1Ci, which completes the proof.
Consider some Ci, for i ∈ {1, . . . ,n}. By construction Dj ⊆ Ci, for j 6= i. Thus pi

is the only point from P that may not be in Ci. As pi is part of only one of P1 or P2,
say, of P1, we have P2 ⊆ Ci. The convexity of Ci implies conv(P2) ⊆ Ci and, therefore,
p ∈ Ci. �
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Theorem 4.10 (Carathéodory [3]) For any P ⊂ Rd and q ∈ conv(P) there exist k 6 d+ 1
points p1, . . . ,pk ∈ P such that q ∈ conv(p1, . . . ,pk).

Exercise 4.11 Prove Theorem 4.10.

Theorem 4.12 (Separation Theorem) Any two compact convex sets C,D ⊂ Rd with C ∩
D = ∅ can be separated strictly by a hyperplane, that is, there exists a hyperplane
h such that C and D lie in the opposite open halfspaces bounded by h.

Proof. Consider the distance function δ : C×D→ R with (c,d) 7→ ||c−d||. Since C×D
is compact and δ is continuous and strictly bounded from below by 0, the function δ
attains its minimum at some point (c0,d0) ∈ C × D with δ(c0,d0) > 0. Let h be the
hyperplane perpendicular to the line segment c0d0 and passing through the midpoint of
c0 and d0.

c0
d0

C
Dh

c ′

If there was a point, say, c ′ in C ∩ h, then by
convexity of C the whole line segment coc ′ lies in
C and some point along this segment is closer to
d0 than is c0, in contradiction to the choice of c0.
The �gure shown to the right depicts the situation
in R2. If, say, C has points on both sides of h, then
by convexity of C it has also a point on h, but we
just saw that there is no such point. Therefore, C
andDmust lie in di�erent open halfspaces bounded
by h. �

The statement above is wrong for arbitrary (not necessarily compact) convex sets. How-
ever, if the separation is not required to be strict (the hyperplane may intersect the sets),
then such a separation always exists, with the proof being a bit more involved (cf. [7],
but also check the errata on Matou²ek's webpage).

Exercise 4.13 Show that the Separation Theorem does not hold in general, if not both
of the sets are convex.

Exercise 4.14 Prove or disprove:

(a) The convex hull of a compact subset of Rd is compact.

(b) The convex hull of a closed subset of Rd is closed.

Altogether we obtain various equivalent de�nitions for the convex hull, summarized
in the following theorem.

Theorem 4.15 For a compact set P ⊂ Rd we can characterize conv(P) equivalently as
one of

(a) the smallest (w. r. t. set inclusion) convex subset of Rd that contains P;
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(b) the set of all convex combinations of points from P;

(c) the set of all convex combinations formed by d+ 1 or fewer points from P;

(d) the intersection of all convex supersets of P;

(e) the intersection of all closed halfspaces containing P.

Exercise 4.16 Prove Theorem 4.15.

4.3 Planar Convex Hull

Although we know by now what is the convex hull of point set, it is not yet clear how
to construct it algorithmically. As a �rst step, we have to �nd a suitable representation
for convex hulls. In this section we focus on the problem in R2, where the convex hull
of a �nite point set forms a convex polygon. A convex polygon is easy to represent,
for instance, as a sequence of its vertices in counterclockwise orientation. In higher
dimensions �nding a suitable representation for convex polytopes is a much more delicate
task.

Problem 4.17 (Convex hull)

Input: P = {p1, . . . ,pn} ⊂ R2, n ∈ N.

Output: Sequence (q1, . . . ,qh), 1 6 h 6 n, of the vertices of conv(P) (ordered counter-
clockwise).

q1

q2

q3

q4

q5

q6

q7

(a) Input.

q1

q2

q3

q4

q5

q6

q7

(b) Output.

Figure 4.2: Convex Hull of a set of points in R2.

Another possible algorithmic formulation of the problem is to ignore the structure of the
convex hull and just consider it as a point set.
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