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(b) the set of all convex combinations of points from P;

(c) the set of all convex combinations formed by d+ 1 or fewer points from P;

(d) the intersection of all convex supersets of P;

(e) the intersection of all closed halfspaces containing P.

Exercise 4.16 Prove Theorem 4.15.

4.3 Planar Convex Hull

Although we know by now what is the convex hull of point set, it is not yet clear how
to construct it algorithmically. As a �rst step, we have to �nd a suitable representation
for convex hulls. In this section we focus on the problem in R2, where the convex hull
of a �nite point set forms a convex polygon. A convex polygon is easy to represent,
for instance, as a sequence of its vertices in counterclockwise orientation. In higher
dimensions �nding a suitable representation for convex polytopes is a much more delicate
task.

Problem 4.17 (Convex hull)

Input: P = {p1, . . . ,pn} ⊂ R2, n ∈ N.

Output: Sequence (q1, . . . ,qh), 1 6 h 6 n, of the vertices of conv(P) (ordered counter-
clockwise).

q1

q2

q3

q4

q5

q6

q7

(a) Input.

q1

q2

q3

q4

q5

q6

q7

(b) Output.

Figure 4.2: Convex Hull of a set of points in R2.

Another possible algorithmic formulation of the problem is to ignore the structure of the
convex hull and just consider it as a point set.
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Problem 4.18 (Extremal points)

Input: P = {p1, . . . ,pn} ⊂ R2, n ∈ N.
Output: Set Q ⊆ P of the vertices of conv(P).

Degeneracies. A couple of further clari�cations regarding the above problem de�nitions
are in order.

First of all, for e�ciency reasons an input is usually speci�ed as a sequence of points.
Do we insist that this sequence forms a set or are duplications of points allowed?

What if three points are collinear? Are all of them considered extremal? According
to our de�nition from above, they are not and that is what we will stick to. But note
that there may be cases where one wants to include all such points, nevertheless.

By the Separation Theorem, every extremal point p can be separated from the convex
hull of the remaining points by a halfplane. If we take such a halfplane and translate its
de�ning line such that it passes through p, then all points from P other than p should lie
in the resulting open halfplane. In R2 it turns out convenient to work with the following
�directed� reformulation.

Proposition 4.19 A point p ∈ P = {p1, . . . ,pn} ⊂ R2 is extremal for P ⇐⇒ there is a
directed line g through p such that P \ {p} is to the left of g.

c
r

The interior angle at a vertex v of a polygon P is the angle
between the two edges of P incident to v whose corresponding
angular domain lies in P◦. If this angle is smaller than π, the
vertex is called convex ; if the angle is larger than π, the vertex is
called re�ex. For instance, the vertex c in the polygon depicted
to the right is a convex vertex, whereas the vertex labeled r is
a re�ex vertex.

Exercise 4.20

A set S ⊂ R2 is star-shaped if there exists a point c ∈ S,
such that for every point p ∈ S the line segment cp is
contained in S. A simple polygon with exactly three convex
vertices is called a pseudotriangle (see the example shown
on the right).

In the following we consider subsets of R2. Prove or disprove:

a) Every convex vertex of a simple polygon lies on its convex hull.

b) Every star-shaped set is convex.

c) Every convex set is star-shaped.

d) The intersection of two convex sets is convex.
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e) The union of two convex sets is convex.

f) The intersection of two star-shaped sets is star-shaped.

g) The intersection of a convex set with a star-shaped set is star-shaped.

h) Every triangle is a pseudotriangle.

i) Every pseudotriangle is star-shaped.

4.4 Trivial algorithms

One can compute the extremal points using Carathéodory's Theorem as follows: Test
for every point p ∈ P whether there are q, r, s ∈ P \ {p} such that p is inside the triangle
with vertices q, r, and s. Runtime O(n4).

Another option, inspired by the Separation Theorem: test for every pair (p,q) ∈ P2
whether all points from P \ {p,q} are to the left of the directed line through p and q (or
on the line segment pq). Runtime O(n3).

Exercise 4.21 Let P = (p0, . . . ,pn−1) be a sequence of n points in R2. Someone claims
that you can check by means of the following algorithm whether or not P describes
the boundary of a convex polygon in counterclockwise order:

bool is_convex(p0, . . . ,pn−1) {
for i = 0, . . . ,n− 1:

if (pi, p(i+1)modn, p(i+2)modn) form a rightturn:
return false;

return true;
}

Disprove the claim and describe a correct algorithm to solve the problem.

Exercise 4.22 Let P ⊂ R2 be a convex polygon, given as an array p[0]. . .p[n-1] of its
n vertices in counterclockwise order.

a) Describe an O(log(n)) time algorithm to determine whether a point q lies
inside, outside or on the boundary of P.

b) Describe an O(log(n)) time algorithm to �nd a (right) tangent to P from a
query point q located outside P. That is, �nd a vertex p[i], such that P is
contained in the closed halfplane to the left of the oriented line qp[i].
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4.5 Jarvis' Wrap

We are now ready to describe a �rst simple algorithm to construct the convex hull. It
works as follows:

Find a point p1 that is a vertex of conv(P) (e.g., the one with smallest x-
coordinate). �Wrap� P starting from p1, i.e., always �nd the next vertex
of conv(P) as the one that is rightmost with respect to the direction given
by the previous two vertices.

Besides comparing x-coordinates, the only geometric primitive needed is an orienta-
tion test: Denote by rightturn(p,q, r), for three points p,q, r ∈ R2, the predicate that
is true if and only if r is (strictly) to the right of the oriented line pq.

q[0]=p start

q next

q[1]

q[2]

Code for Jarvis' Wrap.

p[0..N) contains a sequence of N points.
p_start point with smallest x-coordinate.
q_next some other point in p[0..N).

int h = 0;

Point_2 q_now = p_start;

do {

q[h] = q_now;

h = h + 1;

for (int i = 0; i < N; i = i + 1)

if (rightturn_2(q_now, q_next, p[i]))

q_next = p[i];

q_now = q_next;

q_next = p_start;

} while (q_now != p_start);

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).
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Analysis. For every output point the above algorithm spends n rightturn tests, which is
⇒ O(nh) in total.

Theorem 4.23 [6] Jarvis' Wrap computes the convex hull of n points in R2 using
O(nh) rightturn tests, where h is the number of hull vertices.

In the worst case we have h = n, that is, O(n2) rightturn tests. Jarvis' Wrap has a
remarkable property that is called output sensitivity : the runtime depends not only on
the size of the input but also on the size of the output. For a huge point set it constructs
the convex hull in optimal linear time, if the convex hull consists of a constant number of
vertices only. Unfortunately the worst case performance of Jarvis' Wrap is suboptimal,
as we will see soon.

Degeneracies. The algorithm may have to cope with various degeneracies.

� Several points have smallest x-coordinate ⇒ lexicographic order:

(px,py) < (qx,qy) ⇐⇒ px < qx ∨ px = qx ∧ py < qy .

� Three or more points collinear ⇒ choose the point that is farthest among those
that are rightmost.

Predicates. Besides the lexicographic comparison mentioned above, the Jarvis' Wrap
(and most other 2D convex hull algorithms for that matter) need one more geomet-
ric predicate: the rightturn or�more generally�orientation test. The computation
amounts to evaluating a polynomial of degree two, see the exercise below. We therefore
say that the orientation test has algebraic degree two. In contrast, the lexicographic
comparison has degree one only. The algebraic degree not only has a direct impact on
the e�ciency of a geometric algorithm (lower degree↔ less multiplications), but also an
indirect one because high degree predicates may create large intermediate results, which
may lead to over�ows and are much more costly to compute with exactly.

Exercise 4.24 Prove that for three points (px,py), (qx,qy), (rx, ry) ∈ R2, the sign of
the determinant∣∣∣∣∣∣

1 px py
1 qx qy
1 rx ry

∣∣∣∣∣∣
determines if r lies to the right, to the left or on the directed line through p and q.

Exercise 4.25 The InCircle predicate is: Given three points p,q, r ∈ R2 that de�ne
a circle C and a fourth point s, is s located inside C or not? The goal of this
exercise is to derive an algebraic formulation of the incircle predicate in form of
a determinant, similar to the formulation of the orientation test given above in
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Exercise 4.24. To this end we employ the so-called parabolic lifting map, which will
also play a prominent role in the next chapter of the course.

The parabolic lifting map ` : R2 → R3 is de�ned for a point p = (x,y) ∈ R2 by
`(p) = (x,y, x2 + y2). For a circle C ⊆ R2 of positive radius, show that the �lifted
circle� `(C) = {`(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover,
show that a point p ∈ R2 is strictly inside (outside, respectively) of C if and only if
the lifted point `(p) is strictly below (above, respectively) hC.

Use these insights to formulate the InCircle predicate for given points (px,py), (qx,qy), (rx, ry), (sx, sy) ∈
R2 as a determinant.

4.6 Graham Scan (Successive Local Repair)

There exist many algorithms that exhibit a better worst-case runtime than Jarvis' Wrap.
Here we discuss only one of them: a particularly elegant and easy-to-implement variant
of the so-called Graham Scan [5]. This algorithm is referred to as Successive Local
Repair because it starts with some polygon enclosing all points and then step-by-step
repairs the de�ciencies of this polygon, by removing non-convex vertices. It goes as
follows:

Sort points lexicographically and remove duplicates: (p1, . . . ,pn).

p9

p4

p1

p3

p2

p5

p8

p7

p6

p9 p4 p1 p3 p2 p5 p8 p7 p6 p7 p8 p5 p2 p3 p1 p4 p9

As long as there is a (consecutive) triple (p,q, r) such that r is to the right of or on the
directed line −→pq, remove q from the sequence.

Code for Graham Scan.

p[0..N) lexicographically sorted sequence of pairwise distinct points, N > 2.

q[0] = p[0];

int h = 0;

// Lower convex hull (left to right):

for (int i = 1; i < N; i = i + 1) {

while (h>0 && !leftturn_2(q[h-1], q[h], p[i]))

h = h - 1;

h = h + 1;
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q[h] = p[i];

}

// Upper convex hull (right to left):

for (int i = N-2; i >= 0; i = i - 1) {

while (!leftturn_2(q[h-1], q[h], p[i]))

h = h - 1;

h = h + 1;

q[h] = p[i];

}

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).

Analysis.

Theorem 4.26 The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logn) geometric operations.

Proof.

1. Sorting and removal of duplicate points: O(n logn).

2. At the beginning we have a sequence of 2n − 1 points; at the end the sequence
consists of h points. Observe that for every positive orientation test, one point is
discarded from the sequence for good. Therefore, we have exactly 2n− h− 1 such
shortcuts/positive orientation tests. In addition there are at most 2n− 2 negative
tests (#iterations of the outer for loops). Altogether we have at most 4n− h− 3
orientation tests.

In total the algorithm uses O(n logn) geometric operations. Note that the number of
orientation tests is linear only, but O(n logn) lexicographic comparisons are needed. �

4.7 Lower Bound

It is not hard to see that the runtime of Graham Scan is asymptotically optimal in the
worst-case.

Theorem 4.27 Ω(n logn) geometric operations are needed to construct the convex hull
of n points in R2 (in the algebraic computation tree model).

Proof. Reduction from sorting (for which it is known that Ω(n logn) comparisons
are needed in the algebraic computation tree model). Given n real numbers x1, . . . , xn,
construct a set P = {pi | 1 6 i 6 n} of n points in R2 by setting pi = (xi, x2i). This
construction can be regarded as embedding the numbers into R2 along the x-axis and
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then projecting the resulting points vertically onto the unit parabola. The order in which
the points appear along the lower convex hull of P corresponds to the sorted order of
the xi. Therefore, if we could construct the convex hull in o(n logn) time, we could also
sort in o(n logn) time. �

Clearly this reduction does not work for the Extremal Points problem. But us-
ing a reduction from Element Uniqueness (see Section 1.1) instead, one can show that
Ω(n logn) is also a lower bound for the number of operations needed to compute the set
of extremal points only. This was �rst shown by Avis [1] for linear computation trees,
then by Yao [9] for quadratic computation trees, and �nally by Ben-Or [2] for general
algebraic computation trees.

4.8 Chan's Algorithm

Given matching upper and lower bounds we may be tempted to consider the algorithmic
complexity of the planar convex hull problem settled. However, this is not really the
case: Recall that the lower bound is a worst case bound. For instance, the Jarvis' Wrap
runs in O(nh) time an thus beats the Ω(n logn) bound in case that h = o(logn). The
question remains whether one can achieve both output dependence and optimal worst
case performance at the same time. Indeed, Chan [4] presented an algorithm to achieve
this runtime by cleverly combining the �best of� Jarvis' Wrap and Graham Scan. Let us
look at this algorithm in detail. The algorithm consists of two steps that are executed
one after another.

Divide. Input: a set P ⊂ R2 of n points and a number H ∈ {1, . . . ,n}.

1. Divide P into k = dn/He sets P1, . . . ,Pk with |Pi| 6 H.

2. Construct conv(Pi) for all i, 1 6 i 6 k.

Analysis. Step 1 takes O(n) time. Step 2 can be handled using Graham Scan in
O(H logH) time for any single Pi, that is, O(n logH) time in total.

Conquer. Output: the vertices of conv(P) in counterclockwise order, if conv(P) has less
than H vertices; otherwise, the message that conv(P) has at least H vertices.

1. Find the lexicographically smallest point in conv(Pi) for all i, 1 6 i 6 k.

2. Starting from the lexicographically smallest point of P �nd the �rst H points of
conv(P) oriented counterclockwise (simultaneous Jarvis' Wrap on the sequences
conv(Pi)).
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Determine in every wrap step the point qi of tan-
gency from the current point of conv(P) to conv(Pi),
for all 1 6 i 6 k. We have seen in Exercise 4.22 how
to compute qi in O(log |conv(Pi)|) = O(logH) time.
Among the k candidates q1, . . . ,qk we �nd the next
vertex of conv(P) in O(k) time.

Analysis. Step 1 takes O(n) time. Step 2 con-
sists of at most H wrap steps. Each wrap step needs
O(k logH + k) = O(k logH) time, which amounts to
O(Hk logH) = O(n logH) time for Step 2 in total.

Remark. Using a more clever search strategy instead of many tangency searches one
can handle the conquer phase in O(n) time, see Exercise 4.28 below. However, this is
irrelevant as far as the asymptotic runtime is concerned, given that already the divide
step takes O(n logH) time.

Exercise 4.28 Consider k convex polygons P1, . . .Pk, for some constant k ∈ N, where
each polygon is given as a list of its vertices in counterclockwise orientation. Show
how to construct the convex hull of P1 ∪ . . . ∪ Pk in O(n) time, where n =

∑k
i=1 ni

and ni is the number of vertices of Pi, for 1 6 i 6 k.

Searching for h. While the runtime bound for H = h is exactly what we were heading for,
it looks like in order to actually run the algorithm we would have to know h, which�
in general�we do not. Fortunately we can circumvent this problem rather easily, by
applying what is called a doubly exponential search. It works as follows.

Call the algorithm from above iteratively with parameter H = min{22
t
,n}, for t =

0, . . ., until the conquer step �nds all extremal points of P (i.e., the wrap returns to its
starting point).

Analysis: Let 22
s
be the last parameter for which the algorithm is called. Since the

previous call with H = 22
s−1

did not �nd all extremal points, we know that 22
s−1

< h,
that is, 2s−1 < logh, where h is the number of extremal points of P. The total runtime
is therefore at most

s∑
i=0

cn log 22
i

= cn

s∑
i=0

2i = cn(2s+1 − 1) < 4cn logh = O(n logh),

for some constant c ∈ R. In summary, we obtain the following theorem.

Theorem 4.29 The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logh) geometric operations, where h is the number of convex hull vertices.

Questions

13. How is convexity de�ned? What is the convex hull of a set in Rd? Give at
least three possible de�nitions.
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14. What does it mean to compute the convex hull of a set of points in R2? Discuss
input and expected output and possible degeneracies.

15. How can the convex hull of a set of n points in R2 be computed e�ciently?
Describe and analyze (incl. proofs) Jarvis' Wrap, Successive Local Repair, and
Chan's Algorithm.

16. Is there a linear time algorithm to compute the convex hull of n points in R2?
Prove the lower bound and de�ne/explain the model in which it holds.

17. Which geometric primitive operations are used to compute the convex hull of
n points in R2? Explain the two predicates and how to compute them.

Remarks. The sections on Jarvis' Wrap and Graham Scan are based on material that
Emo Welzl prepared for a course on �Geometric Computing� in 2000.
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