
Chapter 5

Delaunay Triangulations

In Chapter 3 we have discussed triangulations of simple polygons. A triangulation nicely
partitions a polygon into triangles, which allows, for instance, to easily compute the
area or a guarding of the polygon. Another typical application scenario is to use a
triangulation T for interpolation: Suppose a function f is de�ned on the vertices of the
polygon P, and we want to extend it �reasonably� and continuously to P◦. Then for a
point p ∈ P◦ �nd a triangle t of T that contains p. As p can be written as a convex
combination

∑3

i=1 λivi of the vertices v1, v2, v3 of t, we just use the same coe�cients to
obtain an interpolation f(p) :=

∑3

i=1 λif(vi) of the function values.
If triangulations are a useful tool when working with polygons, they might also turn

out useful to deal with other geometric objects, for instance, point sets. But what could
be a triangulation of a point set? Polygons have a clearly de�ned interior, which naturally
lends itself to be covered by smaller polygons such as triangles. A point set does not have
an interior, except . . . Here the notion of convex hull comes handy, because it allows us
to treat a point set as a convex polygon. Actually, not really a convex polygon, because
points in the interior of the convex hull should not be ignored completely. But one way to
think of a point set is as a convex polygon�its convex hull�possibly with some holes�
which are points�in its interior. A triangulation should then partition the convex hull
while respecting the points in the interior, as shown in the example in Figure 5.1b.

(a) Simple polygon triangulation. (b) Point set triangulation. (c) Not a triangulation.

Figure 5.1: Examples of (non-)triangulations.

In contrast, the example depicted in Figure 5.1c nicely subdivides the convex hull
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but should not be regarded a triangulation: Two points in the interior are not respected
but simply swallowed by a large triangle.
This interpretation directly leads to the following adaption of De�nition 3.8.

De�nition 5.1 A triangulation of a �nite point set P ⊂ R2 is a collection T of triangles,
such that

(1) conv(P) =
⋃
T∈T T ;

(2) P =
⋃
T∈T V(T); and

(3) for every distinct pair T ,U ∈ T, the intersection T ∩ U is either a common
vertex, or a common edge, or empty.

Just as for polygons, triangulations are universally available for point sets, meaning
that (almost) every point set admits at least one.

Proposition 5.2 Every set P ⊆ R2 of n > 3 points has a triangulation, unless all points
in P are collinear.

Proof. In order to construct a triangulation for P, consider the lexicographically sorted
sequence p1, . . . ,pn of points in P. Let m be minimal such that p1, . . . ,pm are not
collinear. We triangulate p1, . . . ,pm by connecting pm to all of p1, . . . ,pm−1 (which are
on a common line), see Figure 5.2a.

(a) Getting started. (b) Adding a point.

Figure 5.2: Constructing the scan triangulation of P.

Then we add pm+1, . . . ,pn. When adding pi, for i > m, we connect pi with all
vertices of Ci−1 := conv({p1, . . . ,pi−1}) that it �sees�, that is, every vertex v of Ci−1 for
which piv∩Ci−1 = {v}. In particular, among these vertices are the two points of tangency
from pi to Ci−1, which shows that we always add triangles (Figure 5.2b) whose union
after each step covers Ci. �

The triangulation that is constructed in Proposition 5.2 is called a scan triangulation.
Such a triangulation (Figure 5.3a (left) shows a larger example) is usually �ugly�, though,
since it tends to have many long and skinny triangles. This is not just an aesthetic de�cit.
Having long and skinny triangles means that the vertices of a triangle tend to be spread
out far from each other. You can probably imagine that such a behavior is undesirable,
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for instance, in the context of interpolation. In contrast, the Delaunay triangulation
of the same point set (Figure 5.3b) looks much nicer, and we will discuss in the next
section how to get this triangulation.

(a) Scan triangulation. (b) Delaunay triangulation.

Figure 5.3: Two triangulations of the same set of 50 points.

Exercise 5.3 Describe an O(n logn) time algorithm to construct a scan triangulation
for a set of n points in R2.

On another note, if you look closely into the SLR-algorithm to compute planar convex
hull that was discussed in Chapter 4, then you will realize that we also could have used
this algorithm in the proof of Proposition 5.2. Whenever a point is discarded during
SLR, a triangle is added to the polygon that eventually becomes the convex hull.

In view of the preceding chapter, we may regard a triangulation as a plane graph:
the vertices are the points in P and there is an edge between two points p 6= q, if and
only if there is a triangle with vertices p and q. Therefore we can use Euler's formula to
determine the number of edges in a triangulation.

Lemma 5.4 Any triangulation of a set P ⊂ R2 of n points has exactly 3n−h−3 edges,
where h is the number of points from P on ∂conv(P).

Proof. Consider a triangulation T of P and denote by E the set of edges and by F the
set of faces of T . We count the number of edge-face incidences in two ways. Denote
I = {(e, f) ∈ E× F : e ⊂ ∂f}.

On the one hand, every edge is incident to exactly two faces and therefore |I| = 2|E|.
On the other hand, every bounded face of T is a triangle and the unbounded face has h
edges on its boundary. Therefore, |I| = 3(|F| − 1) + h.
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Together we obtain 3|F| = 2|E| − h + 3. Using Euler's formula (3n − 3|E| + 3|F| = 6)
we conclude that 3n− |E| − h+ 3 = 6 and so |E| = 3n− h− 3. �

In graph theory, the term �triangulation� is sometimes used as a synonym for �maxi-
mal planar�. But geometric triangulations are di�erent, they are maximal planar in the
sense that no straight-line edge can be added without sacri�cing planarity.

Corollary 5.5 A triangulation of a set P ⊂ R2 of n points is maximal planar, if and
only if conv(P) is a triangle.

Proof. Combine Corollary 2.5 and Lemma 5.4. �

Exercise 5.6 Find for every n > 3 a simple polygon P with n vertices such that P has
exactly one triangulation. P should be in general position, meaning that no three
vertices are collinear.

Exercise 5.7 Show that every set of n > 5 points in general position (no three points
are collinear) has at least two di�erent triangulations.
Hint: Show �rst that every set of �ve points in general position contains a convex
4-hole, that is, a subset of four points that span a convex quadrilateral that does
not contain the �fth point.

5.1 The Empty Circle Property

We will now move on to study the ominous and supposedly nice Delaunay triangulations
mentioned above. They are de�ned in terms of an empty circumcircle property for
triangles. The circumcircle of a triangle is the unique circle passing through the three
vertices of the triangle, see Figure 5.4.

Figure 5.4: Circumcircle of a triangle.

De�nition 5.8 A triangulation of a �nite point set P ⊂ R2 is called a Delaunay triangu-
lation, if the circumcircle of every triangle is empty, that is, there is no point from
P in its interior.
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Consider the example depicted in Figure 5.5. It shows a Delaunay triangulation of a
set of six points: The circumcircles of all �ve triangles are empty (we also say that the
triangles satisfy the empty circle property). The dashed circle is not empty, but that is
�ne, since it is not a circumcircle of any triangle.

Figure 5.5: All triangles satisfy the empty circle property.

It is instructive to look at the case of four points in convex position. Obviously, there
are two possible triangulations, but in general, only one of them will be Delaunay, see
Figure 5.6a and 5.6b. If the four points are on a common circle, though, this circle is
empty; at the same time it is the circumcircle of all possible triangles; therefore, both
triangulations of the point set are Delaunay, see Figure 5.6c.

(a) Delaunay triangulation. (b) Non-Delaunay triangulation. (c) Two Delaunay triangulations.

Figure 5.6: Triangulations of four points in convex position.

Proposition 5.9 Given a set P ⊂ R2 of four points that are in convex position but not
cocircular. Then P has exactly one Delaunay triangulation.

Proof. Consider a convex polygon P = pqrs. There are two triangulation of P: a
triangulation T1 using the edge pr and a triangulation T2 using the edge qs.
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Consider the family C1 of circles through pr, which contains the circumcircles C1 =

pqr and C ′1 = rsp of the triangles in T1. By assumption s is not on C1. If s is outside of
C1, then q is outside of C ′1: Consider the process of continuously moving from C1 to C ′1
in C1 (Figure 5.7a); the point q is �left behind� immediately when going beyond C1 and
only the �nal circle C ′1 �grabs� the point s.

p

q
r

s

C1

C ′
1

(a) Going from C1 to C ′
1
in C1.

p

q r

s

C1

C2

(b) Going from C1 to C2 in C2.

Figure 5.7: Circumcircles and containment for triangulations of four points.

Similarly, consider the family C2 of circles through pq, which contains the circumcir-
cles C1 = pqr and C2 = spq, the latter belonging to a triangle in T2. As s is outside of
C1, it follows that r is inside C2: Consider the process of continuously moving from C1

to C2 in C2 (Figure 5.7b); the point r is on C1 and remains within the circle all the way
up to C2. This shows that T1 is Delaunay, whereas T2 is not.

The case that s is located inside C1 is symmetric: just cyclically shift the roles of
pqrs to qrsp. �

5.2 The Lawson Flip algorithm

It is not clear yet that every point set actually has a Delaunay triangulation (given that
not all points are on a common line). In this and the next two sections, we will prove
that this is the case. The proof is algorithmic. Here is the Lawson �ip algorithm for a
set P of n points.

1. Compute some triangulation of P (for example, the scan triangulation).

2. While there exists a subtriangulation of four points in convex position that is not
Delaunay (like in Figure 5.6b), replace this subtriangulation by the other triangu-
lation of the four points (Figure 5.6a).

We call the replacement operation in the second step a (Lawson) �ip.
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Theorem 5.10 Let P ⊆ R2 be a set of n points, equipped with some triangulation T.
The Lawson �ip algorithm terminates after at most

(
n
2

)
= O(n2) �ips, and the

resulting triangulation D is a Delaunay triangulation of P.

We will prove Theorem 5.10 in two steps: First we show that the program described
above always terminates and, therefore, is an algorithm, indeed (Section 5.3). Then we
show that the algorithm does what it claims to do, namely the result is a Delaunay
triangulation (Section 5.4).

5.3 Termination of the Lawson Flip Algorithm: The Lifting Map

In order to prove Theorem 5.10, we invoke the (parabolic) lifting map. This is the
following: given a point p = (x,y) ∈ R2, its lifting `(p) is the point

`(p) = (x,y, x2 + y2) ∈ R3.

Geometrically, ` �lifts� the point vertically up until it lies on the unit paraboloid

{(x,y, z) | z = x2 + y2} ⊆ R3,

see Figure 5.8a.

(a) The lifting map. (b) Points on/inside/outside a circle are lifted to
points on/below/above a plane.

Figure 5.8: The lifting map: circles map to planes.

Recall the following important property of the lifting map that we proved in Exercise 4.25.
It is illustrated in Figure 5.8b.

Lemma 5.11 Let C ⊆ R2 be a circle of positive radius. The �lifted circle� `(C) = {`(p) |

p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover, a point p ∈ R2 is strictly
inside (outside, respectively) of C if and only if the lifted point `(p) is strictly below
(above, respectively) hC.
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Using the lifting map, we can now prove Theorem 5.10. Let us �x the point set P for
this and the next section. First, we need to argue that the algorithm indeed terminates
(if you think about it a little, this is not obvious). So let us interpret a �ip operation in
the lifted picture. The �ip involves four points in convex position in R2, and their lifted
images form a tetrahedron in R3 (think about why this tetrahedron cannot be ��at�).

The tetrahedron is made up of four triangles; when you look at it from the top, you
see two of the triangles, and when you look from the bottom, you see the other two. In
fact, what you see from the top and the bottom are the lifted images of the two possible
triangulations of the four-point set in R2 that is involved in the �ip.

Here is the crucial fact that follows from Lemma 5.11: The two top triangles come
from the non-Delaunay triangulation before the �ip, see Figure 5.9a. The reason is that
both top triangles have the respective fourth point below them, meaning that in R2,
the circumcircles of these triangles contain the respective fourth point�the empty circle
property is violated. In contrast, the bottom two triangles come from the Delaunay
triangulation of the four points: they both have the respective fourth point above them,
meaning that in R2, the circumcircles of the triangles do not contain the respective fourth
point, see Figure 5.9b.

(a) Before the �ip: the top two triangles of
the tetrahedron and the corresponding non-
Delaunay triangulation in the plane.

(b) After the �ip: the bottom two triangles of the
tetrahedron and the corresponding Delaunay
triangulation in the plane.

Figure 5.9: Lawson �ip: the height of the surface of lifted triangles decreases.

In the lifted picture, a Lawson �ip can therefore be interpreted as an operation that
replaces the top two triangles of a tetrahedron by the bottom two ones. If we consider
the lifted image of the current triangulation, we therefore have a surface in R3 whose
pointwise height can only decrease through Lawson �ips. In particular, once an edge
has been �ipped, this edge will be strictly above the resulting surface and can therefore
never be �ipped a second time. Since n points can span at most

(
n
2

)
edges, the bound

on the number of �ips follows.
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5.4 Correctness of the Lawson Flip Algorithm

It remains to show that the triangulation of P that we get upon termination of the
Lawson �ip algorithm is indeed a Delaunay triangulation. Here is a �rst observation
telling us that the triangulation is �locally Delaunay�.

Observation 5.12 Let ∆,∆ ′ be two adjacent triangles in the triangulation D that results
from the Lawson �ip algorithm. Then the circumcircle of ∆ does not have any
vertex of ∆ ′ in its interior, and vice versa.

If the two triangles together form a convex quadrilateral, this follows from the fact
that the Lawson �ip algorithm did not �ip the common edge of ∆ and ∆ ′. If the four
vertices are not in convex position, this is basic geometry: given a triangle ∆, its cir-
cumcircle C can only contains points of C \∆ that form a convex quadrilateral with the
vertices of ∆.

Now we show that the triangulation is also �globally Delaunay�.

Proposition 5.13 The triangulation D that results from the Lawson �ip algorithm is
a Delaunay triangulation.

Proof. Suppose for contradiction that there is some triangle ∆ ∈ D and some point
p ∈ P strictly inside the circumcircle C of ∆. Among all such pairs (∆,p), we choose one
for which we the distance of p to ∆ is minimal. Note that this distance is positive since
D is a triangulation of P. The situation is as depicted in Figure 5.10a.

q

∆

p

(a) A point p inside the cir-
cumcircle C of a triangle ∆.
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∆

p
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(b) The edge e of ∆ closest to p
and the second triangle ∆ ′

incident to e.

∆

p

q

∆ ′

e

C ′
C

(c) The circumcircle C ′ of ∆ ′ also
contains p, and p is closer to
∆ ′ than to ∆.

Figure 5.10: Correctness of the Lawson �ip algorithm.

Now consider the edge e of ∆ that is facing p. There must be another triangle ∆ ′ in
D that is incident to the edge e. By the local Delaunay property of D, the third vertex q
of ∆ ′ is on or outside of C, see Figure 5.10b. But then the circumcircle C ′ of ∆ ′ contains
the whole portion of C on p's side of e, hence it also contains p; moreover, p is closer to
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