
Chapter 4

Convexity and Convex Hulls

There exists an incredible variety of point sets and polygons. Among them, some have
certain properties that make them “nicer” than others in some respect. For instance,
look at the two polygons shown below.

(a) A convex polygon. (b) A non-convex polygon.

Figure 4.1: Examples of polygons: Which do you like better?

As it is hard to argue about aesthetics, let us take a more algorithmic stance. When
designing algorithms, the polygon shown on the left appears much easier to deal with
than the visually and geometrically more complex polygon shown on the right. One
particular property that makes the left polygon nice is that one can walk between any
two vertices along a straight line without ever leaving the polygon. In fact, this statement
holds true not only for vertices but for any two points within the polygon. A polygon
or, more generally, a set with this property is called convex.

Definition 4.1. A set P ⊆ Rd is convex if pq ⊆ P, for every pair p, q ∈ P.

An alternative, equivalent way to phrase convexity would be to demand that for every
line ` ⊂ Rd the intersection `∩P be connected. The polygon shown in Figure 4.1b is not
convex because there are some pairs of points for which the connecting line segment is not
completely contained within the polygon. An immediate consequence of the definition
is the following

64

Geometry: C&A 2019 4.1. Convexity

Observation 4.2. For any family (Pi)i∈I of convex sets, the intersection
⋂

i∈I Pi is
convex.

Indeed there are many problems that are comparatively easy to solve for convex sets
but very hard in general. We will encounter some particular instances of this phenomenon
later in the course. However, not all polygons are convex and a discrete set of points is
never convex, unless it consists of at most one point only. In such a case it is useful to
make a given set P convex, that is, approximate P with or, rather, encompass P within
a convex set H ⊇ P. Ideally, H differs from P as little as possible, that is, we want H to
be a smallest convex set enclosing P.

At this point let us step back for a second and ask ourselves whether this wish makes
sense at all: Does such a set H (always) exist? Fortunately, we are on the safe side
because the whole space Rd is certainly convex. It is less obvious, but we will see below
that H is actually unique. Therefore it is legitimate to refer to H as the smallest convex
set enclosing P or—shortly—the convex hull of P.

4.1 Convexity

In this section we will derive an algebraic characterization of convexity. Such a charac-
terization allows to investigate convexity using the machinery from linear algebra.

Consider P ⊂ Rd. From linear algebra courses you should know that the linear hull

lin(P) :=

{
n∑

i=1

λipi

∣∣∣∣∣ n ∈ N ∧ ∀ i ∈ {1, . . . , n} : pi ∈ P, λi ∈ R

}

is the set of all linear combinations of P (smallest linear subspace containing P). For
instance, if P = {p} ⊂ R2 \ {0} then lin(P) is the line through p and the origin.

Similarly, the affine hull

aff(P) :=

{
n∑

i=1

λipi

∣∣∣∣∣ n ∈ N ∧ ∀ i ∈ {1, . . . , n} : pi ∈ P, λi ∈ R ∧

n∑
i=1

λi = 1

}

is the set of all affine combinations of P (smallest affine subspace containing P). For
instance, if P = {p, q} ⊂ R2 and p 6= q then aff(P) is the line through p and q.

It turns out that convexity can be described in a very similar way algebraically, which
leads to the notion of convex combinations.

Proposition 4.3. A set P ⊆ Rd is convex if and only if
∑n

i=1 λipi ∈ P, for all n ∈ N,
p1, . . . , pn ∈ P, and λ1, . . . , λn > 0 with

∑n
i=1 λi = 1.

Proof. “⇐”: obvious with n = 2.
“⇒”: Induction on n. For n = 1 the statement is trivial. For n > 2, let pi ∈ P

and λi > 0, for 1 6 i 6 n, and assume
∑n

i=1 λi = 1. We may suppose that λi > 0,

65

Chapter 4. Convexity and Convex Hulls Geometry: C&A 2019

for all i. (Simply omit those points whose coefficient is zero.) We need to show that∑n
i=1 λipi ∈ P.
Define λ =

∑n−1
i=1 λi and for 1 6 i 6 n − 1 set µi = λi/λ. Observe that µi > 0

and
∑n−1

i=1 µi = 1. By the inductive hypothesis, q :=
∑n−1

i=1 µipi ∈ P, and thus by
convexity of P also λq + (1 − λ)pn ∈ P. We conclude by noting that λq + (1 − λ)pn =

λ
∑n−1

i=1 µipi + λnpn =
∑n

i=1 λipi.

Definition 4.4. The convex hull conv(P) of a set P ⊆ Rd is the intersection of all convex
supersets of P.

At first glance this definition is a bit scary: There may be a whole lot of supersets
for any given P and it is not clear that taking the intersection of all of them yields
something sensible to work with. However, by Observation 4.2 we know that the resulting
set is convex, at least. The missing bit is provided by the following proposition, which
characterizes the convex hull in terms of exactly those convex combinations that appeared
in Proposition 4.3 already.

Proposition 4.5. For any P ⊆ Rd we have

conv(P) =

{
n∑

i=1

λipi

∣∣∣∣∣ n ∈ N ∧

n∑
i=1

λi = 1 ∧ ∀i ∈ {1, . . . , n} : λi > 0∧ pi ∈ P

}
.

The elements of the set on the right hand side are referred to as convex combinations
of P.

Proof. “⊇”: Consider a convex set C ⊇ P. By Proposition 4.3 (only-if direction) the
right hand side is contained in C. As C was arbitrary, the claim follows.

“⊆”: Denote the set on the right hand side by R. Clearly R ⊇ P. We show that R
forms a convex set. Let p =

∑n
i=1 λipi and q =

∑n
i=1 µipi be two convex combinations.

(We may suppose that both p and q are expressed over the same pi by possibly adding
some terms with a coefficient of zero.)

Then for λ ∈ [0, 1] we have λp + (1 − λ)q =
∑n

i=1(λλi + (1 − λ)µi)pi ∈ R, as
λλi︸︷︷︸
>0

+(1− λ)︸ ︷︷ ︸
>0

µi︸︷︷︸
>0

> 0, for all 1 6 i 6 n, and
∑n

i=1(λλi+(1−λ)µi) = λ+(1−λ) = 1.

In linear algebra the notion of a basis in a vector space plays a fundamental role. In
a similar way we want to describe convex sets using as few entities as possible, which
leads to the notion of extremal points, as defined below.

Definition 4.6. The convex hull of a finite point set P ⊂ Rd forms a convex polytope.
Each p ∈ P for which p /∈ conv(P \ {p}) is called a vertex of conv(P). A vertex of
conv(P) is also called an extremal point of P. A convex polytope in R2 is called a
convex polygon.

66

Geometry: C&A 2019 4.2. Classic Theorems for Convex Sets

Essentially, the following proposition shows that the term vertex above is well defined.

Proposition 4.7. A convex polytope in Rd is the convex hull of its vertices.

Proof. Let P = {p1, . . . , pn} for n ∈ N, such that without loss of generality p1, . . . , pk
are the vertices of P := conv(P). We prove by induction on n that conv(p1, . . . , pn) ⊆
conv(p1, . . . , pk). For n = k the statement is trivial.

For n > k, the point pn is not a vertex of P and hence pn can be expressed as a
convex combination pn =

∑n−1
i=1 λipi. Thus for any x ∈ P we can write x =

∑n
i=1 µipi =∑n−1

i=1 µipi+µn

∑n−1
i=1 λipi =

∑n−1
i=1 (µi+µnλi)pi. As

∑n−1
i=1 (µi+µnλi) = 1, we conclude

inductively that x ∈ conv(p1, . . . , pn−1) ⊆ conv(p1, . . . , pk).

4.2 Classic Theorems for Convex Sets

Next we will discuss a few fundamental theorems about convex sets in Rd. The proofs
typically use the algebraic characterization of convexity and then employ some techniques
from linear algebra.

Theorem 4.8 (Radon [9]). Any set P ⊂ Rd of d + 2 points can be partitioned into two
disjoint subsets P1 and P2 such that conv(P1) ∩ conv(P2) 6= ∅.
Proof. Let P = {p1, . . . , pd+2}. No more than d + 1 points can be affinely independent
in Rd. Hence suppose without loss of generality that pd+2 can be expressed as an affine
combination of p1, . . . , pd+1, that is, there exist λ1, . . . , λd+1 ∈ R with

∑d+1
i=1 λi = 1

and
∑d+1

i=1 λipi = pd+2. Let P1 be the set of all points pi for which λi is positive and
let P2 = P \ P1. Then setting λd+2 = −1 we can write

∑
pi∈P1

λipi =
∑

pi∈P2
−λipi,

where all coefficients on both sides are non-negative. Since
∑i=d+2

i=1 λi = 0 we have
s :=

∑
pi∈P1

λi =
∑

pi∈P2
−λi. Renormalizing by µi = λi/s and νi = λi/s yields convex

combinations
∑

pi∈P1
µipi =

∑
pi∈P2

νipi that describe a common point of conv(P1) and
conv(P2).

Theorem 4.9 (Helly). Consider a collection C = {C1, . . . , Cn} of n > d + 1 convex
subsets of Rd, such that any d + 1 pairwise distinct sets from C have non-empty
intersection. Then also the intersection

⋂n
i=1Ci of all sets from C is non-empty.

Proof. Induction on n. The base case n = d + 1 holds by assumption. Hence suppose
that n > d + 2. Consider the sets Di =

⋂
j6=iCj, for i ∈ {1, . . . , n}. As Di is an

intersection of n − 1 sets from C, by the inductive hypothesis we know that Di 6= ∅.
Therefore we can find some point pi ∈ Di, for each i ∈ {1, . . . , n}. Now by Theorem 4.8
the set P = {p1, . . . , pn} can be partitioned into two disjoint subsets P1 and P2 such that
conv(P1) ∩ conv(P2) 6= ∅. We claim that any point p ∈ conv(P1) ∩ conv(P2) also lies in⋂n

i=1Ci, which completes the proof.
Consider some Ci, for i ∈ {1, . . . , n}. By construction Dj ⊆ Ci, for j 6= i. Thus pi

is the only point from P that may not be in Ci. As pi is part of only one of P1 or P2,
say, of P1, we have P2 ⊆ Ci. The convexity of Ci implies conv(P2) ⊆ Ci and, therefore,
p ∈ Ci.

67

Chapter 4. Convexity and Convex Hulls Geometry: C&A 2019

There is a nice application of Helly’s theorem showing the existence of so-called
centerpoints of finite point sets. Basically, a centerpoint is one possible generalization of
the median of one-dimensional sets to higher dimensions.

Definition 4.10. Let P ⊂ Rd be a set of n points. A point p ∈ Rd, not necessarily in
P, is a centerpoint of P if every open halfspace that contains more than dn

d+1
points

of P also contains p.

Stated differently, every closed halfspace that contains a centerpoint also contains at
least n

d+1
points of P (which is clearly equivalent to containing at least

⌈
n

d+1

⌉
points).

We have the following result.

Theorem 4.11. For every set P ⊂ Rd of n points there exists a centerpoint.

Proof. We may assume that P contains at least d + 1 affinely independent points (oth-
erwise, a centerpoint can be found in a lower-dimensional affine sub-space).

Let A be the family of subsets of P that are defined by the intersection of P with an
open halfspace, and that contain more than dn

d+1
points. Note that since P is finite, also

the number of sets in A = {A1, . . . , Am} is finite. Let Ci := conv(Ai). If there exists
a point c that is in the intersection

⋂m
i=1Ci, then c is contained in any open halfspace

that contains more than dn
d+1

points of P and thus is a centerpoint of P. We show the
existence of c by showing that any d+ 1 elements of {C1, . . . , Cm} have a common point,
and then apply Theorem 4.9.

For any d + 1 sets in A, suppose that any point of P occurs in at most d of these
subsets. Then in total we would have at most dn occurrences of points from P in these
subsets. However, by the choice of A, each set contains more than dn

d+1
points, so the

total number of occurrences is more than (d + 1) dn
d+1

= dn. Hence, any d + 1 sets in A

have a common point, and thus
⋂m

i=1Ci also contains a point c.

Exercise 4.12. Show that the number of points in Definition 4.10 is best possible, that
is, for every n there is a set of n points in Rd such that for any p ∈ Rd there is an
open halfspace containing

⌊
dn
d+1

⌋
points but not p.

Theorem 4.13 (Carathéodory [3]). For any P ⊂ Rd and q ∈ conv(P) there exist k 6 d+1
points p1, . . . , pk ∈ P such that q ∈ conv(p1, . . . , pk).

Exercise 4.14. Prove Theorem 4.13.

Theorem 4.15 (Separation Theorem). Any two compact convex sets C,D ⊂ Rd with
C ∩D = ∅ can be separated strictly by a hyperplane, that is, there exists a hyperplane
h such that C and D lie in the opposite open halfspaces bounded by h.

Proof. Consider the distance function δ : C×D→ R with (c, d) 7→ ||c−d||. Since C×D
is compact and δ is continuous and strictly bounded from below by 0, the function δ
attains its minimum at some point (c0, d0) ∈ C × D with δ(c0, d0) > 0. Let h be the

68

Geometry: C&A 2019 4.2. Classic Theorems for Convex Sets

c0
d0

C
Dh

c ′

Figure 4.2: The hyperplane h strictly separates the compact convex sets C and D.

hyperplane perpendicular to the line segment c0d0 that passes through the midpoint of
c0 and d0; see Figure 4.2. We claim that h strictly separates C and D.

To see this, suppose there was a point, say, c ′ ∈ C ∩ h. Then by convexity of C the
whole line segment coc ′ lies in C and some point along this segment is closer to d0 than
is c0, in contradiction to the choice of c0. The figure shown to the right depicts the
situation in R2. If, say, C has points on both sides of h, then by convexity of C it has
also a point on h, but we just saw that there is no such point. Therefore, C and D must
lie in different open halfspaces bounded by h.

The statement above is wrong for arbitrary (not necessarily compact) convex sets.
Only if the separation is not required to be strict (the hyperplane may intersect the sets),
such a separation always exists. However, the proof is a bit more involved (cf. Matoušek’s
book [8], but also check the errata on his webpage).

Exercise 4.16. Show that the Separation Theorem does not hold in general if not both
of the sets are convex.

Exercise 4.17. Prove or disprove:

a) The convex hull of a compact subset of Rd is compact.

b) The convex hull of a closed subset of Rd is closed.

Altogether we obtain various equivalent definitions for the convex hull, summarized
in the following theorem.

Theorem 4.18. For a compact set P ⊂ Rd we can characterize conv(P) equivalently as
one of

1. the smallest (w. r. t. set inclusion) convex subset of Rd that contains P;

2. the set of all convex combinations of points from P;

3. the set of all convex combinations formed by d+ 1 or fewer points from P;

4. the intersection of all convex supersets of P;

5. the intersection of all closed halfspaces containing P.

Exercise 4.19. Prove Theorem 4.18.

69

Chapter 4. Convexity and Convex Hulls Geometry: C&A 2019

4.3 Planar Convex Hull

Although we know by now what is the convex hull of a point set, it is not yet clear how
to construct it algorithmically. As a first step, we have to find a suitable representation
for convex hulls. In this section we focus on the problem in R2, where the convex hull
of a finite point set forms a convex polygon. A convex polygon is easy to represent,
for instance, as a sequence of its vertices in counterclockwise orientation. In higher
dimensions finding a suitable representation for convex polytopes is a much more delicate
task.

Problem 4.20 (Convex hull).

Input: P = {p1, . . . , pn} ⊂ R2, for some n ∈ N.

Output: A sequence (q1, . . . , qh) of the vertices of conv(P), ordered counterclockwise.

q1

q2

q3

q4

q5

q6

q7

(a) Input.

q1

q2

q3

q4

q5

q6

q7

(b) Output.

Figure 4.3: Convex Hull of a set of points in R2.

Another possible algorithmic formulation of the problem is to ignore the structure of
the convex hull and just consider it as a point set.

Problem 4.21 (Extremal points).

Input: P = {p1, . . . , pn} ⊂ R2, for some n ∈ N.

Output: The set Q ⊆ P of the vertices of conv(P).

Degeneracies. A couple of further clarifications regarding the above problem definitions
are in order.

First of all, for efficiency reasons an input is usually specified as a sequence of points.
Do we insist that this sequence forms a set or are duplications of points allowed?

What if three points are collinear? Are all of them considered extremal? According
to our definition from above, they are not and that is what we will stick to. But note
that there may be cases where one wants to include all such points, nevertheless.

70

Geometry: C&A 2019 4.4. Trivial algorithms

By the Separation Theorem, every extremal point p can be separated from the convex
hull of the remaining points by a halfplane. If we take such a halfplane and translate its
defining line such that it passes through p, then all points from P other than p should lie
in the resulting open halfplane. In R2 it turns out convenient to work with the following
“directed” reformulation.

Proposition 4.22. A point p ∈ P = {p1, . . . , pn} ⊂ R2 is extremal for P ⇐⇒ there is a
directed line g through p such that P \ {p} is (strictly) to the left of g.

c
r

The interior angle at a vertex v of a polygon P is the angle
between the two edges of P incident to v whose corresponding
angular domain lies in P◦. If this angle is smaller than π, the
vertex is called convex ; if the angle is larger than π, the vertex is
called reflex. For instance, the vertex c in the polygon depicted
to the right is a convex vertex, whereas the vertex labeled r is
a reflex vertex.

Exercise 4.23.
A set S ⊂ R2 is star-shaped if there exists a point c ∈ S,
such that for every point p ∈ S the line segment cp is
contained in S. A simple polygon with exactly three convex
vertices is called a pseudotriangle (see the example shown
on the right).
In the following we consider subsets of R2. Prove or disprove:

a) Every convex vertex of a simple polygon lies on its convex hull.

b) Every star-shaped set is convex.

c) Every convex set is star-shaped.

d) The intersection of two convex sets is convex.

e) The union of two convex sets is convex.

f) The intersection of two star-shaped sets is star-shaped.

g) The intersection of a convex set with a star-shaped set is star-shaped.

h) Every triangle is a pseudotriangle.

i) Every pseudotriangle is star-shaped.

4.4 Trivial algorithms

One can compute the extremal points using Carathéodory’s Theorem as follows: Test
for every point p ∈ P whether there are q, r, s ∈ P \ {p} such that p is inside the triangle
with vertices q, r, and s. Runtime O(n4).

71

Chapter 4. Convexity and Convex Hulls Geometry: C&A 2019

Another option, inspired by the Separation Theorem: test for every pair (p, q) ∈ P2
whether all points from P \ {p, q} are to the left of the directed line through p and q (or
on the line segment pq). Runtime O(n3).

Exercise 4.24. Let P = (p0, . . . , pn−1) be a sequence of n points in R2. Someone claims
that you can check by means of the following algorithm whether or not P describes
the boundary of a convex polygon in counterclockwise order:

bool is_convex(p0, . . . , pn−1) {
for i = 0, . . . , n− 1:

if (pi, p(i+1)modn, p(i+2)modn) form a rightturn:
return false;

return true;
}

Disprove the claim and describe a correct algorithm to solve the problem.

Exercise 4.25. Let P ⊂ R2 be a convex polygon, given as an array p[0]. . .p[n-1] of its
n vertices in counterclockwise order.

a) Describe an O(log(n)) time algorithm to determine whether a point q lies
inside, outside or on the boundary of P.

b) Describe an O(log(n)) time algorithm to find a (right) tangent to P from a
query point q located outside P. That is, find a vertex p[i], such that P is
contained in the closed halfplane to the left of the oriented line qp[i].

4.5 Jarvis’ Wrap

We are now ready to describe a first simple algorithm to construct the convex hull. It is
inspired by Proposition 4.22 and works as follows:

Find a point p1 that is a vertex of conv(P) (e.g., the one with smallest x-
coordinate). “Wrap” P starting from p1, i.e., always find the next vertex
of conv(P) as the one that is rightmost with respect to the direction given
by the previous two vertices.

Besides comparing x-coordinates, the only geometric primitive needed is an orienta-
tion test: Denote by rightturn(p, q, r), for three points p, q, r ∈ R2, the predicate that
is true if and only if r is (strictly) to the right of the oriented line pq.

Code for Jarvis’ Wrap.

p[0..N) contains a sequence of N points.
p_start point with smallest x-coordinate.
q_next some other point in p[0..N).

72

Geometry: C&A 2019 4.5. Jarvis’ Wrap

q[0]=p start

q next

q[1]

q[2]

int h = 0;
Point_2 q_now = p_start;
do {

q[h] = q_now;
h = h + 1;

for (int i = 0; i < N; i = i + 1)
if (rightturn_2(q_now, q_next, p[i]))

q_next = p[i];

q_now = q_next;
q_next = p_start;

} while (q_now != p_start);

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).

Analysis. For every output point the above algorithm spends n rightturn tests, which is
⇒ O(nh) in total.

Theorem 4.26. [7] Jarvis’ Wrap computes the convex hull of n points in R2 using
O(nh) rightturn tests, where h is the number of hull vertices.

In the worst case we have h = n, that is, O(n2) rightturn tests. Jarvis’ Wrap has a
remarkable property that is called output sensitivity : the runtime depends not only on
the size of the input but also on the size of the output. For a huge point set it constructs
the convex hull in optimal linear time, if the convex hull consists of a constant number of
vertices only. Unfortunately the worst case performance of Jarvis’ Wrap is suboptimal,
as we will see soon.

Degeneracies. The algorithm may have to cope with various degeneracies.

� Several points have smallest x-coordinate ⇒ lexicographic order:

(px, py) < (qx, qy) ⇐⇒ px < qx ∨ px = qx ∧ py < qy .

� Three or more points collinear ⇒ choose the point that is farthest among those
that are rightmost.

73

Chapter 4. Convexity and Convex Hulls Geometry: C&A 2019

Predicates. Besides the lexicographic comparison mentioned above, the Jarvis’ Wrap
(and most other 2D convex hull algorithms for that matter) need one more geomet-
ric predicate: the rightturn or—more generally—orientation test. The computation
amounts to evaluating a polynomial of degree two, see the exercise below. We therefore
say that the orientation test has algebraic degree two. In contrast, the lexicographic
comparison has degree one only. The algebraic degree not only has a direct impact on
the efficiency of a geometric algorithm (lower degree↔ less multiplications), but also an
indirect one because high degree predicates may create large intermediate results, which
may lead to overflows and are much more costly to compute with exactly.

Exercise 4.27. Prove that for three points (px, py), (qx, qy), (rx, ry) ∈ R2, the sign of
the determinant∣∣∣∣∣∣

1 px py
1 qx qy

1 rx ry

∣∣∣∣∣∣
determines if r lies to the right, to the left or on the directed line through p and q.

Exercise 4.28. The InCircle predicate is: Given three points p, q, r ∈ R2 that define
a circle C and a fourth point s, is s located inside C or not? The goal of this
exercise is to derive an algebraic formulation of the incircle predicate in form of
a determinant, similar to the formulation of the orientation test given above in
Exercise 4.27. To this end we employ the so-called parabolic lifting map, which will
also play a prominent role in the next chapter of the course.

The parabolic lifting map ` : R2 → R3 is defined for a point p = (x, y) ∈ R2 by
`(p) = (x, y, x2 + y2). For a circle C ⊆ R2 of positive radius, show that the “lifted
circle” `(C) = {`(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover,
show that a point p ∈ R2 is strictly inside (outside, respectively) of C if and only if
the lifted point `(p) is strictly below (above, respectively) hC.

Use these insights to formulate the InCircle predicate for given points (px, py),
(qx, qy), (rx, ry), (sx, sy) ∈ R2 as a determinant.

4.6 Graham Scan (Successive Local Repair)

There exist many algorithms that exhibit a better worst-case runtime than Jarvis’ Wrap.
Here we discuss only one of them: a particularly elegant and easy-to-implement variant of
the so-called Graham Scan [6]. This algorithm is referred to as Successive Local Repair
because it starts with some polygon enclosing all points and then step-by-step repairs
the deficiencies of this polygon, by removing nonconvex vertices. It goes as follows:

Sort the points lexicographically to obtain a sequence p0, . . . , pn−1 and build a cor-
responding circular sequence p0, . . . , pn−1, . . . , p0 that walks around the point set in
anticlockwise direction.

74

Geometry: C&A 2019 4.6. Graham Scan (Successive Local Repair)

p0

p1

p2

p3

p4

p5

p6

p7

p8

p0 p1 p2 p3 p4 p5 p6 p7 p8 p7 p6 p5 p4 p3 p2 p1 p0

As long as there is a (consecutive) triple (p, q, r) such that r is to the right of or on the
directed line −→pq, remove q from the sequence.

Code for Graham Scan.

p[0..N) lexicographically sorted sequence of pairwise distinct points, N > 2.

q[0] = p[0];
int h = 0;
// Lower convex hull (left to right):
for (int i = 1; i < N; i = i + 1) {

while (h>0 && !leftturn_2(q[h-1], q[h], p[i]))
h = h - 1;

h = h + 1;
q[h] = p[i];

}

// Upper convex hull (right to left):
for (int i = N-2; i >= 0; i = i - 1) {

while (!leftturn_2(q[h-1], q[h], p[i]))
h = h - 1;

h = h + 1;
q[h] = p[i];

}

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).

Correctness. We argue for the lower convex hull only. The argument for the upper hull is
symmetric. A point p is on the lower convex hull of P if there is a rightward directed line
g through p such that P\{p} is (strictly) to the left of g. A directed line is rightward if it
forms an absolute angle of at most π with the positive x-axis. (Compare this statement
with the one in Proposition 4.22.)

First, we claim that every point that the algorithm discards does not appear on the
lower convex hull. A point qh is discarded only if there exist points qh−1 and pi with

75

Chapter 4. Convexity and Convex Hulls Geometry: C&A 2019

qh−1 < qh < pi (lexicographically) so that qh−1qhpi does not form a leftturn. Thus,
for every rightward directed line g through qh at least one of qh−1 or pi lies on or to
the right of g. It follows that qh is not on the lower convex hull, as claimed.

At the end of the (lower hull part of the) algorithm, in the sequence q0, . . . , qh−1 every
consecutive triple qiqi+1qi+2, for 0 6 i 6 h− 3, forms a leftturn with qi < qi+1 < qi+2.
Thus, for every such triple there exists a rightward directed line g through qi+1 such that
P\{p} is (strictly) to the left of g (for instance, take g to be perpendicular to the angular
bisector of \qi+2qi+1qi). It follows that every inner point of the sequence q0, . . . , qh−1

is on the lower convex hull. The extreme points q0 and qh−1 are the lexicographically
smallest and largest, respectively, point of P, both of which are easily seen to be on the
lower convex hull as well. Therefore, q0, . . . , qh−1 form the lower convex hull of P, which
proves the correctness of the algorithm.

Analysis.

Theorem 4.29. The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logn) geometric operations.

Proof. 1. Sorting and removal of duplicate points: O(n logn).

2. At the beginning we have a sequence of 2n − 1 points; at the end the sequence
consists of h points. Observe that for every positive orientation test, one point is
discarded from the sequence for good. Therefore, we have exactly 2n− h− 1 such
shortcuts/positive orientation tests. In addition there are at most 2n− 2 negative
tests (#iterations of the outer for loops). Altogether we have at most 4n− h− 3
orientation tests.

In total the algorithm uses O(n logn) geometric operations. Note that the number of
orientation tests is linear only, but O(n logn) lexicographic comparisons are needed.

4.7 Lower Bound

It is not hard to see that the runtime of Graham Scan is asymptotically optimal in the
worst-case.

Theorem 4.30. Ω(n logn) geometric operations are needed to construct the convex
hull of n points in R2 (in the algebraic computation tree model).

Proof. Reduction from sorting (for which it is known that Ω(n logn) comparisons are
needed in the algebraic computation tree model). Given n real numbers x1, . . . , xn,
construct a set P = {pi | 1 6 i 6 n} of n points in R2 by setting pi = (xi, x

2
i). This

construction can be regarded as embedding the numbers into R2 along the x-axis and
then projecting the resulting points vertically onto the unit parabola. The order in which
the points appear along the lower convex hull of P corresponds to the sorted order of
the xi. Therefore, if we could construct the convex hull in o(n logn) time, we could also
sort in o(n logn) time.

76

Geometry: C&A 2019 4.8. Chan’s Algorithm

Clearly this reduction does not work for the Extremal Points problem. But us-
ing a reduction from Element Uniqueness (see Section 1.1) instead, one can show that
Ω(n logn) is also a lower bound for the number of operations needed to compute the set
of extremal points only. This was first shown by Avis [1] for linear computation trees,
then by Yao [10] for quadratic computation trees, and finally by Ben-Or [2] for general
algebraic computation trees.

4.8 Chan’s Algorithm

Given matching upper and lower bounds we may be tempted to consider the algorithmic
complexity of the planar convex hull problem settled. However, this is not really the
case: Recall that the lower bound is a worst case bound. For instance, the Jarvis’ Wrap
runs in O(nh) time an thus beats the Ω(n logn) bound in case that h = o(logn). The
question remains whether one can achieve both output dependence and optimal worst
case performance at the same time. Indeed, Chan [4] presented an algorithm to achieve
this runtime by cleverly combining the “best of” Jarvis’ Wrap and Graham Scan. Let us
look at this algorithm in detail. The algorithm consists of two steps that are executed
one after another.

Divide. Input: a set P ⊂ R2 of n points and a number H ∈ {1, . . . , n}.

1. Divide P into k = dn/He sets P1, . . . , Pk with |Pi| 6 H.

2. Construct conv(Pi) for all i, 1 6 i 6 k.

Analysis. Step 1 takes O(n) time. Step 2 can be handled using Graham Scan in
O(H logH) time for any single Pi, that is, O(n logH) time in total.

Conquer. Output: the vertices of conv(P) in counterclockwise order, if conv(P) has less
than H vertices; otherwise, the message that conv(P) has at least H vertices.

1. Find the lexicographically smallest point p< in P.

2. Starting from p< find the first H points of conv(P) oriented counterclockwise (si-
multaneous Jarvis’ Wrap on the sequences conv(Pi)).

Determine in every wrap step the point qi of tan-
gency from the current point of conv(P) to conv(Pi),
for all 1 6 i 6 k. We have seen in Exercise 4.25 how
to compute qi in O(log |conv(Pi)|) = O(logH) time.
Among the k candidates q1, . . . , qk we find the next
vertex of conv(P) in O(k) time.

Analysis. Step 1 takes O(n) time. Step 2 con-
sists of at most H wrap steps. Each wrap step needs

77

Chapter 4. Convexity and Convex Hulls Geometry: C&A 2019

O(k logH + k) = O(k logH) time, which amounts to
O(Hk logH) = O(n logH) time for Step 2 in total.

Remark. Using a more clever search strategy instead of many tangency searches one
can handle the conquer phase in O(n) time, see Exercise 4.31 below. However, this is
irrelevant as far as the asymptotic runtime is concerned, given that already the divide
step takes O(n logH) time.

Exercise 4.31. Consider k convex polygons P1, . . . Pk, for some constant k ∈ N, where
each polygon is given as a list of its vertices in counterclockwise orientation. Show
how to construct the convex hull of P1 ∪ . . . ∪ Pk in O(n) time, where n =

∑k
i=1 ni

and ni is the number of vertices of Pi, for 1 6 i 6 k.

Searching for h. While the runtime bound for H = h is exactly what we were heading for,
it looks like in order to actually run the algorithm we would have to know h, which—
in general—we do not. Fortunately we can circumvent this problem rather easily, by
applying what is called a doubly exponential search. It works as follows.

Call the algorithm from above iteratively with parameter H = min{22t

, n}, for t =
0, . . ., until the conquer step finds all extremal points of P (i.e., the wrap returns to its
starting point).

Analysis: Let 22s be the last parameter for which the algorithm is called. Since the
previous call with H = 22

s−1 did not find all extremal points, we know that 22s−1

< h,
that is, 2s−1 < logh, where h is the number of extremal points of P. The total runtime
is therefore at most

s∑
i=0

cn log 22
i

= cn

s∑
i=0

2i = cn(2s+1 − 1) < 4cn logh = O(n logh),

for some constant c ∈ R. In summary, we obtain the following theorem.

Theorem 4.32. The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logh) geometric operations, where h is the number of convex hull vertices.

Questions

14. How is convexity defined? What is the convex hull of a set in Rd? Give at
least three possible definitions and show that they are equivalent.

15. What is a centerpoint of a finite point set in Rd? State and prove the center-
point theorem and the two classic theorems used in its proof (Theorem 4.11 along
with Theorem 4.9 and Theorem 4.8).

16. What does it mean to compute the convex hull of a set of points in R2? Discuss
input and expected output and possible degeneracies.

78

Geometry: C&A 2019 4.8. Chan’s Algorithm

17. How can the convex hull of a set of n points in R2 be computed efficiently?
Describe and analyze (incl. proofs) Jarvis’ Wrap, Successive Local Repair, and
Chan’s Algorithm.

18. Is there a linear time algorithm to compute the convex hull of n points in R2?
Prove the lower bound and define/explain the model in which it holds.

19. Which geometric primitive operations are used to compute the convex hull of
n points in R2? Explain the two predicates and how to compute them.

References

[1] David Avis, Comments on a lower bound for convex hull determination. Inform.
Process. Lett., 11/3, (1980), 126.

[2] Michael Ben-Or, Lower bounds for algebraic computation trees. In Proc. 15th
Annu. ACM Sympos. Theory Comput., pp. 80–86, 1983.

[3] Constantin Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstan-
ten von positiven harmonischen Funktionen. Rendiconto del Circolo Matematico
di Palermo, 32, (1911), 193–217.

[4] Timothy M. Chan, Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete Comput. Geom., 16/4, (1996), 361–368.

[5] Herbert Edelsbrunner, Algorithms in combinatorial geometry , vol. 10 of EATCS
Monographs on Theoretical Computer Science, Springer, 1987.

[6] Ronald L. Graham, An efficient algorithm for determining the convex hull of a finite
planar set. Inform. Process. Lett., 1/4, (1972), 132–133.

[7] Ray A. Jarvis, On the identification of the convex hull of a finite set of points in the
plane. Inform. Process. Lett., 2/1, (1973), 18–21.

[8] Jiří Matoušek, Lectures on discrete geometry , Springer-Verlag, New York, NY,
2002.

[9] Johann Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten.
Math. Annalen, 83/1–2, (1921), 113–115.

[10] Andrew C. Yao, A lower bound to finding convex hulls. J. ACM, 28/4, (1981),
780–787.

79

https://doi.org/10.1016/0020-0190(80)90125-8
https://doi.org/10.1145/800061.808735
https://doi.org/10.1007/BF03014795
https://doi.org/10.1007/BF03014795
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(73)90020-3
https://doi.org/10.1016/0020-0190(73)90020-3
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/BF01464231
https://doi.org/10.1145/322276.322289

	Fundamentals
	Models of Computation
	Basic Geometric Objects
	Graphs

	Plane Embeddings
	Drawings, Embeddings and Planarity
	Graph Representations
	The Doubly-Connected Edge List
	Manipulating a DCEL
	Graphs with Unbounded Edges
	Combinatorial Embeddings

	Unique Embeddings
	Triangulating a Plane Graph
	Compact Straight-Line Drawings
	Canonical Orderings
	The Shift-Algorithm
	Remarks and Open Problems

	Polygons
	Classes of Polygons
	Polygon Triangulation
	The Art Gallery Problem
	Optimal Guarding

	Convexity and Convex Hulls
	Convexity
	Classic Theorems for Convex Sets
	Planar Convex Hull
	Trivial algorithms
	Jarvis' Wrap
	Graham Scan (Successive Local Repair)
	Lower Bound
	Chan's Algorithm

	Delaunay Triangulations
	The Empty Circle Property
	The Lawson Flip algorithm
	Termination of the Lawson Flip Algorithm: The Lifting Map
	Correctness of the Lawson Flip Algorithm
	The Delaunay Graph
	Every Delaunay Triangulation Maximizes the Smallest Angle
	Constrained Triangulations

	Delaunay Triangulation: Incremental Construction
	Incremental construction
	The History Graph
	Analysis of the algorithm

	Voronoi Diagrams
	Post Office Problem
	Voronoi Diagram
	Duality
	Lifting Map
	Planar Point Location
	Kirkpatrick's Hierarchy

	Line Arrangements
	Arrangements
	Construction
	Zone Theorem
	The Power of Duality
	Rotation Systems—Sorting all Angular Sequences
	Segment Endpoint Visibility Graphs
	3-Sum
	Ham Sandwich Theorem
	Constructing Ham Sandwich Cuts in the Plane
	Davenport-Schinzel Sequences
	Constructing lower envelopes
	Complexity of a single face

	Counting
	Introduction
	Embracing k-Sets in the Plane
	Adding a Dimension
	The Upper Bound
	Faster Counting—Another Vector
	Characterizing All Possibilities
	Some Add-Ons

	Crossings
	Line Sweep
	Interval Intersections
	Segment Intersections
	Improvements
	Algebraic degree of geometric primitives
	Red-Blue Intersections

	The Configuration Space Framework
	The Delaunay triangulation — an abstract view
	Configuration Spaces
	Expected structural change
	Bounding location costs by conflict counting
	Expected number of conflicts

	Trapezoidal Maps
	The Trapezoidal Map
	Applications of trapezoidal maps
	Incremental Construction of the Trapezoidal Map
	Using trapezoidal maps for point location
	Analysis of the incremental construction
	Defining The Right Configurations
	Update Cost
	The History Graph
	Cost of the Find step
	Applying the General Bounds

	Analysis of the point location
	The trapezoidal map of a simple polygon

	Translational Motion Planning
	Complexity of Minkowski sums
	Minkowski sum of two convex polygons
	Constructing a single face

	Linear Programming
	Linear Separability of Point Sets
	Linear Programming
	Minimum-area Enclosing Annulus
	Solving a Linear Program

	A randomized Algorithm for Linear Programming
	Helly's Theorem
	Convexity, once more
	The Algorithm
	Runtime Analysis
	Violation Tests
	Basis Computations
	The Overall Bound

	Smallest Enclosing Balls
	The trivial algorithm
	Welzl's Algorithm
	The Swiss Algorithm
	The Forever Swiss Algorithm
	Smallest Enclosing Balls in the Manhattan Distance

	Epsilon Nets
	Motivation
	Range spaces and -nets.
	Either almost all is needed or a constant suffices.
	What makes the difference: VC-dimension
	VC-dimension of Geometric Range Spaces
	Small -Nets, an Easy Warm-up Version
	Even Smaller -Nets

