
Chapter 8

Line Arrangements

During the course of this lecture we encountered several situations where it was conve-
nient to assume that a point set is “in general position”. In the plane, general position
usually amounts to no three points being collinear and/or no four of them being cocircu-
lar. This raises an algorithmic question: How can we test for n given points whether or
not three of them are collinear? Obviously, we can test all triples in O(n3) time. Can we
do better? Yes, we can! Using a detour through the so-called dual plane, we will see that
this problem can be solved in O(n2) time. However, the exact algorithmic complexity
of this innocent-looking problem is not known. In fact, to determine this complexity is
one of the major open problems in theoretical computer science.

We will get back to the complexity theoretic problems and ramifications at the end
of this chapter. But first let us discuss how to obtain a quadratic time algorithm to test
whether n given points in the plane are in general position. This algorithm is a nice ap-
plication of the projective duality transform, as defined below. Such transformations are
very useful because they allow us to gain a new perspective on a problem by formulating
it in a different but equivalent form. Sometimes such a dual form of the problem is easier
to work with and—given that it is equivalent to the original primal form—any solution
to the dual problem can be translated back into a solution to the primal problem.

So what is this duality transform about? Observe that points and hyperplanes in Rd

are very similar objects, given that both can be described using d coordinates/parameters.
It is thus tempting to match these parameters to each other and so create a mapping
between points and hyperplanes. In R2 hyperplanes are lines and the standard projec-
tive duality transform maps a point p = (px, py) to the line p∗ : y = pxx − py and a
non-vertical line g : y = mx+ b to the point g∗ = (m,−b).

Proposition 8.1. The standard projective duality transform is

� incidence preserving: p ∈ g ⇐⇒ g∗ ∈ p∗ and

� order preserving: p is above g ⇐⇒ g∗ is above p∗.

Exercise 8.2. Prove Proposition 8.1.
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Geometry: C&A 2019 8.1. Arrangements

Exercise 8.3. Describe the image of the following point sets under this mapping

a) a halfplane

b) k > 3 collinear points

c) a line segment

d) the boundary points of the upper convex hull of a finite point set.

Another way to think of duality is in terms of the parabola P : y = 1
2
x2. For a point

p on P, the dual line p∗ is the tangent to P at p. For a point p not on P, consider the
vertical projection p ′ of p onto P: the slopes of p∗ and p ′∗ are the same, just p∗ is shifted
by the difference in y-coordinates.

p

p∗

q

q∗

`∗

`

P

Figure 8.1: Point ↔ line duality with respect to the parabola P : y = 1
2
x2.

The question of whether or not three points in the primal plane are collinear trans-
forms to whether or not three lines in the dual plane meet in a point. This question in
turn we will answer with the help of line arrangements, as defined below.

8.1 Arrangements

The subdivision of the plane induced by a finite set L of lines is called the arrangement
A(L). We may imagine the creation of this subdivision as a recursive process, defined
by the given set L of lines. As a first step, remove all lines (considered as point sets)
from the plane R2. What remains of R2 are a number of open connected components
(possibly only one), which we call the (2-dimensional) cells of the subdivision. In the
next step, from every line in L remove all the remaining lines (considered as point sets).
In this way every line is split into a number of open connected components (possibly only
one), which collectively form the (1-dimensional cells or) edges of the subdivision. What
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Chapter 8. Line Arrangements Geometry: C&A 2019

remains of the lines are the (0-dimensional cells or) vertices of the subdivision, which are
intersection points of lines from L.

Observe that all cells of the subdivision are intersections of halfplanes and thus con-
vex. A line arrangement is simple if no two lines are parallel and no three lines meet in
a point. Although lines are unbounded, we can regard a line arrangement a bounded
object by (conceptually) putting a sufficiently large box around that contains all vertices.
Such a box can be constructed in O(n logn) time for n lines.

Exercise 8.4. How?

Moreover, we can view a line arrangement as a planar graph by adding an additional
vertex at “infinity”, that is incident to all rays which leave this bounding box. For
algorithmic purposes, we will mostly think of an arrangement as being represented by a
doubly connected edge list (DCEL), cf. Section 2.2.1.

Theorem 8.5. A simple arrangement A(L) of n lines in R2 has
(
n
2

)
vertices, n2 edges,

and
(
n
2

)
+ n+ 1 faces/cells.

Proof. Since all lines intersect and all intersection points are pairwise distinct, there are(
n
2

)
vertices.
The number of edges we count using induction on n. For n = 1 we have 12 = 1 edge.

By adding one line to an arrangement of n − 1 lines we split n − 1 existing edges into
two and introduce n new edges along the newly inserted line. Thus, there are in total
(n− 1)2 + 2n− 1 = n2 − 2n+ 1+ 2n− 1 = n2 edges.

The number f of faces can now be obtained from Euler’s formula v− e+ f = 2, where
v and e denote the number of vertices and edges, respectively. However, in order to
apply Euler’s formula we need to consider A(L) as a planar graph and take the symbolic
“infinite” vertex into account. Therefore,

f = 2−

((
n

2

)
+ 1

)
+n2 = 1+

1

2
(2n2−n(n− 1)) = 1+

1

2
(n2+n) = 1+

(
n

2

)
+n .

The complexity of an arrangement is simply the total number of vertices, edges, and
faces (in general, cells of any dimension).

Exercise 8.6. Consider a set of lines in the plane with no three intersecting in a
common point. Form a graph G whose vertices are the intersection points of the
lines and such that two vertices are adjacent if and only if they appear consecutively
along one of the lines. Prove that χ(G) 6 3, where χ(G) denotes the chromatic
number of the graph G. In other words, show how to color the vertices of G using
at most three colors such that no two adjacent vertices have the same color.
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8.2 Construction

As the complexity of a line arrangement is quadratic, there is no need to look for a sub-
quadratic algorithm to construct it. We will simply construct it incrementally, inserting
the lines one by one. Let `1, . . . , `n be the order of insertion.

At Step i of the construction, locate `i in the leftmost cell of A({`1, . . . , `i−1}) it
intersects. (The halfedges leaving the infinite vertex are ordered by slope.) This takes
O(i) time. Then traverse the boundary of the face F found until the halfedge h is found
where `i leaves F (see Figure 8.2 for illustration). Insert a new vertex at this point,
splitting F and h and continue in the same way with the face on the other side of h.

`

Figure 8.2: Incremental construction: Insertion of a line `. (Only part of the ar-
rangement is shown in order to increase readability.)

The insertion of a new vertex involves splitting two halfedges and thus is a constant
time operation. But what is the time needed for the traversal? The complexity of
A({`1, . . . , `i−1}) is Θ(i2), but we will see that the region traversed by a single line has
linear complexity only.

8.3 Zone Theorem

For a line ` and an arrangement A(L), the zone ZA(L)(`) of ` in A(L) is the set of cells
from A(L) whose closure intersects `.

Theorem 8.7. Given an arrangement A(L) of n lines in R2 and a line ` (not necessarily
from L), the total number of edges in all cells of the zone ZA(L)(`) is at most 10n.

Proof. Without loss of generality suppose that ` is horizontal (rotate the plane accord-
ingly). For each cell of ZA(L)(`) split its boundary at its topmost vertex and at its
bottommost vertex and orient all edges from bottom to top, horizontal edges from left
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to right. Those edges that have the cell to their right are called left-bounding for the cell
and those edges that have the cell to their left are called right-bounding. For instance,
for the cell depicted in Figure 8.3, all left-bounding edges are shown blue and bold.

Figure 8.3: Left-bounding edges (blue and bold) of a cell.

We will show that there are at most 5n left-bounding edges in ZA(L)(`) by induction
on n. By symmetry, the same bound holds also for the number of right-bounding edges
in ZA(L)(`).

For n = 1, there is at most one (exactly one, unless ` is parallel to and lies above the
only line in L) left-bounding edge in ZA(L)(`) and 1 6 5n = 5. Assume the statement is
true for n− 1.

`

r

`0

`1

Figure 8.4: At most three new left-bounding edges are created by adding r to A(L\{r}).

If no line from L intersects `, then all lines in L ∪ {`} are horizontal and there is at
most 1 < 5n left-bounding edge in ZA(L)(`). Else assume first that there is a single
rightmost line r from L intersecting ` and the arrangement A(L \ {r}). By the induction
hypothesis there are at most 5n − 5 left-bounding edges in ZA(L\{r})(`). Adding r back
adds at most three new left-bounding edges: At most two edges (call them `0 and `1) of
the rightmost cell of ZA(L\{r})(`) are intersected by r and thereby split in two. Both of
these two edges may be left-bounding and thereby increase the number of left-bounding
edges by at most two. In any case, r itself contributes exactly one more left-bounding
edge to that cell. The line r cannot contribute a left-bounding edge to any cell other
than the rightmost: to the left of r, the edges induced by r form right-bounding edges
only and to the right of r all other cells touched by r (if any) are shielded away from
` by one of `0 or `1. Therefore, the total number of left-bounding edges in ZA(L)(`) is
bounded from above by 3+ 5n− 5 < 5n.
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If there are several rightmost lines that intersect ` in the same point, we consider these
lines in an arbitrary order. Using the same line of arguments as in the previous case,
it can be observed that we add at most five left-bounding edges when adding a line r ′

after having added a line r, where both r and r ′ pass through the rightmost intersection
point on `. Apart from r, the line r ′ intersects at most two left-bounding edges `0 and
`1 of cells in the zone of `. There are two new left-bounding segments on r ′, and at most
one additional on r. Hence, the number of left-bounding edges in this case is at most
5+ 5n− 5 = 5n.

Corollary 8.8. The arrangement of n lines in R2 can be constructed in optimal O(n2)
time and space.

Proof. Use the incremental construction described above. In Step i, for 1 6 i 6 n,
we do a linear search among i − 1 elements to find the starting face and then traverse
(part of) the zone of the line `i in the arrangement A({`1, . . . , `i−1}). By Theorem 8.7
the complexity of this zone and hence the time complexity of Step i altogether is O(i).
Overall we obtain

∑n
i=1 ci = O(n

2) time (and space), for some constant c > 0, which is
optimal by Theorem 8.5.

The corresponding bounds for hyperplane arrangements in Rd are Θ(nd) for the
complexity of a simple arrangement and O(nd−1) for the complexity of a zone of a
hyperplane.

Exercise 8.9. For an arrangement A of a set of n lines in R2, let

F :=
⋃

C is a bounded cell ofA

C

denote the union of the closure of all bounded cells. Show that the complexity
(number of vertices and edges of the arrangement lying on the boundary) of F is
O(n).

8.4 The Power of Duality

The real beauty and power of line arrangements becomes apparent in context of projective
point ↔ line duality. It is often convenient to assume that no two points in the primal
have the same x-coordinate so that no line defined by any two points is vertical (and
hence becomes an infinite point in the dual). This degeneracy can be tested for by sorting
according to x-coordinate (in O(n logn) time) and resolved by rotating the whole plane
by some sufficiently small angle. In order to select the rotation angle it is enough to
determine the line of maximum absolute slope that passes through two points. Then we
can take, say, half of the angle between such a line and the vertical direction. As the
line of maximum slope through any given point can be found in linear time, the overall
maximum can be obtained in O(n2) time.

The following problems can be solved in O(n2) time and space by constructing the
dual arrangement.
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General position test. Given n points in R2, are any three of them collinear? (Dual: do
any three lines of the dual arrangement meet in a single point?)

Minimum area triangle. Given a set P ⊂ R2 of n points, what is the minimum area triangle
spanned by any three (pairwise distinct) points of P? Let us make the problem easier
by fixing two distinct points p, q ∈ P and ask for a minimum area triangle pqr, where
r ∈ P \ {p, q}. With pq fixed, the area of pqr is determined by the distance between r
and the line pq. Thus, we want to find a point r ∈ P \ {p, q} of minimum distance to pq.
Equivalently, we want to find

a closest line ` parallel to pq so that ` passes through some point r ∈ P \ {p, q}. (?)

Consider the set P∗ = {p∗ : p ∈ P} of dual lines and their arrangement A. In A the
statement (?) translates to “a closest point `∗ with the same x-coordinate as the vertex
p∗ ∩ q∗ of A that lies on some line r∗ ∈ P∗.” See Figure 8.5 for illustration.

p q

r

s

t

`

(a) primal

p∗

s∗
t∗

q∗

r∗
`∗

(b) dual

Figure 8.5: Minimum area triangle spanned by two fixed points p, q.

In other words, for the vertex v = p∗ ∩ q∗ of A we want to know what is a first
line from P∗ that is hit by a vertical ray—upward or downward—emanating from v. Of
course, in the end we want this information not only for such a single vertex (which
provides the minimum area triangle for fixed p, q) but for all vertices of A, that is, for
all possible pairs of fixed vertices p, q ∈

(
P
2

)
. Luckily, all this information can easily be

maintained over the incremental construction of A. When inserting a line `, this new line
may become the first line hit by some vertical rays from vertices of the already computed
partial arrangement. However, only vertices in the zone of ` may be affected. This zone
is traversed, anyway, during the insertion of `. So, during the traversal we can also check
possibly update the information for vertices that lie vertically above or below a new edge
of the arrangement, with no extra cost asymptotically.
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In this way obtain O(n2) candidate triangles by constructing the arrangement of the
n dual lines in O(n2) time. The smallest among those candidates can be determined by a
straightforward minimum selection (comparing the area of the corresponding triangles).

Exercise 8.10. A set P of n points in the plane is said to be in ε-general position for
ε > 0 if no three points of the form

p+ (x1, y1), q+ (x2, y2), r+ (x3, y3)

are collinear, where p, q, r ∈ P and |xi|, |yi| < ε, for i ∈ {1, 2, 3}. In words: P remains
in general position under changing point coordinates by less than ε each.

Give an algorithm with runtime O(n2) for checking whether a given point set P
is in ε-general position.

8.5 Rotation Systems—Sorting all Angular Sequences

Recall the notion of a combinatorial embedding from Chapter 2. It is specified by
the circular order of edges along the boundary of each face or—equivalently, dually—
around each vertex. In a similar way we can also give a combinatorial description of the
geometry of a finite point set P ⊂ R2 using its rotation system. This is nothing else but a
combinatorial embedding of the complete geometric (straight line) graph on P, specified
by the circular order of edges around vertices.1

For a given set P of n points, it is trivial to construct the corresponding rotation
system in O(n2 logn) time, by sorting each of the n lists of neighbors independently.
The following theorem describes a more efficient, in fact optimal, algorithm.

Theorem 8.11. Consider a set P of n points in the plane. For a point q ∈ P let cP(q)
denote the circular sequence of points from S \ {q} ordered counterclockwise around
q (in order as they would be encountered by a ray sweeping around q). The rotation
system of P, consisting of all cP(q), for q ∈ P, collectively can be obtained in O(n2)
time.

Proof. Consider the projective dual P∗ of P. An angular sweep around a point q ∈ P
in the primal plane corresponds to a traversal of the line q∗ from left to right in the
dual plane. (A collection of lines through a single point q corresponds to a collection of
points on a single line q∗ and slope corresponds to x-coordinate.) Clearly, the sequence of
intersection points along all lines in P∗ can be obtained by constructing the arrangement
in O(n2) time. In the primal plane, any such sequence corresponds to an order of the
remaining points according to the slope of the connecting line; to construct the circular
sequence of points as they are encountered around q, we have to split the sequence
obtained from the dual into those points that are to the left of q and those that are to
the right of q; concatenating both yields the desired sequence.

1As these graphs are not planar for |P| > 5, we do not have the natural dual notion of faces as in the
case of planar graphs.
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8.6 Segment Endpoint Visibility Graphs

A fundamental problem in motion planning is to find a short(est) path between two
given positions in some domain, subject to certain constraints. As an example, suppose
we are given two points p, q ∈ R2 and a set S ⊂ R2 of obstacles. What is the shortest
path between p and q that avoids S?

Observation 8.12. The shortest path (if it exists) between two points that does not
cross a finite set of finite polygonal obstacles is a polygonal path whose interior
vertices are obstacle vertices.

One of the simplest type of obstacle conceivable is a line segment. In general the
plane may be disconnected with respect to the obstacles, for instance, if they form a
closed curve. However, if we restrict the obstacles to pairwise disjoint line segments then
there is always a free path between any two given points. Apart from start and goal
position, by the above observation we may restrict our attention concerning shortest
paths to straight line edges connecting obstacle vertices, in this case, segment endpoints.

Definition 8.13. Consider a set S of n disjoint line segments in R2. The segment
endpoint visibility graph V(S) is a geometric straight line graph defined on the segment
endpoints. Two segment endpoints p and q are connected by an edge in V(S) if and
only if

� the line segment pq is in S or

� pq ∩ s ⊆ {p, q} for every segment s ∈ S.

Figure 8.6: A set of disjoint line segments and their endpoint visibility graph.

If all segments are on the convex hull, the visibility graph is complete. If they form
parallel chords of a convex polygon, the visibility graph consists of copies of K4, glued
together along opposite edges and the total number of edges is linear only.

These graphs also appear in the context of the following question: Given a set of
disjoint line segments, is it possible to connect them to form (the boundary of) a simple
polygon? It is easy to see that this is not possible in general: Just take three parallel
chords of a convex polygon (Figure 8.7a). However, if we do not insist that the segments
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appear on the boundary, but allow them to be diagonals or epigonals, then it is always
possible [11, 12]. In other words, the segment endpoint visibility graph of disjoint line
segments is Hamiltonian, unless all segments are collinear. It is actually essential to
allow epigonals and not only diagonals [9, 20] (Figure 8.7b).

(a) (b)

Figure 8.7: Sets of disjoint line segments that do not allow certain polygons.

Constructing V(S) for a given set S of disjoint segments in a brute force way takes
O(n3) time. (Take all pairs of endpoints and check all other segments for obstruction.)

Theorem 8.14 (Welzl [21]). The segment endpoint visibility graph of n disjoint line
segments can be constructed in worst case optimal O(n2) time.

Proof. As before we assume general position, that is, no three endpoints are collinear
and no two have the same x-coordinate. It is no problem to handle such degeneracies
explicitly.

We have seen above how all sorted angular sequences can be obtained from the dual
line arrangement in O(n2) time. Topologically sweep the arrangement from left to right
(corresponds to changing the slope of the primal rays from −∞ to +∞) while maintaining
for each segment endpoint p the segment s(p) it currently “sees” (if any). Initialize by
brute force in O(n2) time (direction vertically downwards). Each intersection of two
lines corresponds to two segment endpoints “seeing” each other along the primal line
whose dual is the point of intersection. In order to process an intersection, we only need
that all preceding (located to the left) intersections of the two lines involved have already
been processed. This order corresponds to a topological sort of the arrangement graph
where all edges are directed from left to right. (Clearly, this graph is acyclic, that is, it
does not contain a directed cycle.) A topological sort can be obtained, for instance, via
(reversed) post order DFS in time linear in the size of the graph (number of vertices and
edges), which in our case here is O(n2).

When processing an intersection, there are four cases. Let p and q be the two points
involved such that p is to the left of q.

1. The two points belong to the same input segment→ output the edge pq, no change
otherwise.

2. q is obscured from p by s(p) → no change.

3. q is endpoint of s(p) → output pq and update s(p) to s(q).
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4. Otherwise q is endpoint of a segment t that now obscures s(p) → output pq and
update s(p) to t.

Thus any intersection can be processed in constant time and the overall runtime of this
algorithm is quadratic.

8.7 3-Sum

The 3-Sum problem is the following: Given a set S of n integers, does there exist a
three-tuple2 of elements from S that sum up to zero? By testing all three-tuples this
can obviously be solved in O(n3) time. If the tuples to be tested are picked a bit more
cleverly, we obtain an O(n2) algorithm.

Let (s1, . . . , sn) be the sequence of elements from S in increasing order. This sequence
can be obtained by sorting in O(n logn) time. Then we test the tuples as follows.

For i = 1, . . . , n {
j = i, k = n.
While k > j {

If si + sj + sk = 0 then exit with triple si, sj, sk.
If si + sj + sk > 0 then k = k− 1 else j = j+ 1.

}
}

The runtime is clearly quadratic. Regarding the correctness observe that the following
is an invariant that holds at the start of every iteration of the inner loop: si+sx+sk < 0,
for all x ∈ {i, . . . , j− 1}, and si + sj + sx > 0, for all x ∈ {k+ 1, . . . , n}.

Interestingly, until very recently this was the best algorithm known for 3-Sum. But
at FOCS 2014, Grønlund and Pettie [8] presented a deterministic algorithm that solves
3-Sum in O(n2(log logn/ logn)2/3) time.

They also give a bound of O(n3/2
√
logn) on the decision tree complexity of 3-Sum,

which since then has been further improved in a series of papers. The latest improvement
is due to Kane, Lovett, and Moran [13] who showed that O(n log2 n) linear queries suffice
(where a query amounts to ask for the sign of the sum of at most six input numbers with
coefficients in {−1, 1}). In this decision tree model, only queries that involve the input
numbers are counted, all other computation, for instance, using these query results to
analyze the parameter space are for free. In other words, the results on the decision
tree complexity of 3-Sum demonstrate that the (supposed) hardness of 3-Sum does not
originate from the complexity of the decision tree.

2That is, an element of S may be chosen twice or even three times, although the latter makes sense for
the number 0 only. :-)
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The big open question remains whether an O(n2−ε) algorithm can be achieved.
Only in some very restricted models of computation—such as the 3-linear decision tree
model3—it is known that 3-Sum requires quadratic time [6].

3-Sum hardness There is a whole class of problems that are equivalent to 3-Sum up to
sub-quadratic time reductions [7]; such problems are referred to as 3-Sum-hard.

Definition 8.15. A problem P is 3-Sum-hard if and only if every instance of 3-Sum
of size n can be solved using a constant number of instances of P—each of O(n)
size—and o(n2−ε) additional time, for some ε > 0.

For instance, it is not hard to show that the following variation of 3-Sum—let us
denote it by 3-Sum◦—is 3-Sum-hard: Given a set S of n integers, does there exist a
three-element subset of S whose elements sum up to zero?

Exercise 8.16. Show that 3-Sum◦ is 3-Sum-hard.

As another example, consider the Problem GeomBase: Given n points on the three
horizontal lines y = 0, y = 1, and y = 2, is there a non-horizontal line that contains at
least three of them?

3-Sum can be reduced to GeomBase as follows. For an instance S = {s1, . . . , sn} of
3-Sum, create an instance P of GeomBase in which for each si there are three points in
P: (si, 0), (−si/2, 1), and (si, 2). If there are any three collinear points in P, there must
be one from each of the lines y = 0, y = 1, and y = 2. So suppose that p = (si, 0),
q = (−sj/2, 1), and r = (sk, 2) are collinear. The inverse slope of the line through p
and q is −sj/2−si

1−0
= −sj/2 − si and the inverse slope of the line through q and r is

sk+sj/2

2−1
= sk+sj/2. The three points are collinear if and only if the two slopes are equal,

that is, −sj/2− si = sk + sj/2 ⇐⇒ si + sj + sk = 0.
A very similar problem is General Position, in which one is given n arbitrary points

and has to decide whether any three are collinear. For an instance S of 3-Sum◦, create
an instance P of General Position by projecting the numbers si onto the curve y = x3,
that is, P = {(a, a3) |a ∈ S}.

Suppose three of the points, say, (a, a3), (b, b3), and (c, c3) are collinear. This is the
case if and only if the slopes of the lines through each pair of them are equal. (Observe
that a, b, and c are pairwise distinct.)

(b3 − a3)/(b− a) = (c3 − b3)/(c− b) ⇐⇒
b2 + a2 + ab = c2 + b2 + bc ⇐⇒

b = (c2 − a2)/(a− c) ⇐⇒
b = −(a+ c) ⇐⇒

a+ b+ c = 0 .

3where a decision depends on the sign of a linear expression in 3 input variables
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Minimum Area Triangle is a strict generalization of General Position and, therefore, also
3-Sum-hard.

In Segment Splitting/Separation, we are given a set of n line segments and have to
decide whether there exists a line that does not intersect any of the segments but splits
them into two non-empty subsets. To show that this problem is 3-Sum-hard, we can
use essentially the same reduction as for GeomBase, where we interpret the points along
the three lines y = 0, y = 1, and y = 2 as sufficiently small “holes”. The parts of the
lines that remain after punching these holes form the input segments for the Splitting
problem. Horizontal splits can be prevented by putting constant size gadgets somewhere
beyond the last holes, see the figure below. The set of input segments for the segment

splitting problem requires sorting the points along each of the three horizontal lines,
which can be done in O(n logn) = o(n2) time. It remains to specify what “sufficiently
small” means for the size of those holes. As all input numbers are integers, it is not hard
to show that punching a hole of (x − 1/4, x + 1/4) around each input point x is small
enough.

In Segment Visibility, we are given a set S of n horizontal line segments and two
segments s1, s2 ∈ S. The question is: Are there two points, p1 ∈ s1 and p2 ∈ s2 which
can see each other, that is, the open line segment p1p2 does not intersect any segment
from S? The reduction from 3-Sum is the same as for Segment Splitting, just put s1
above and s2 below the segments along the three lines.

In Motion Planning, we are given a robot (line segment), some environment (modeled
as a set of disjoint line segments), and a source and a target position. The question is:
Can the robot move (by translation and rotation) from the source to the target position,
without ever intersecting the “walls” of the environment?

To show that Motion Planning is 3-Sum-hard, employ the reduction for Segment
Splitting from above. The three “punched” lines form the doorway between two rooms,
each modeled by a constant number of segments that cannot be split, similar to the
boundary gadgets above. The source position is in one room, the target position in the
other, and to get from source to target the robot has to pass through a sequence of three
collinear holes in the door (suppose the doorway is sufficiently small compared to the
length of the robot).

Exercise 8.17. The 3-Sum’ problem is defined as follows: given three sets S1, S2, S3 of
n integers each, are there a1 ∈ S1, a2 ∈ S2, a3 ∈ S3 such that a1 + a2 + a3 = 0?
Prove that the 3-Sum’ problem and the 3-Sum problem as defined in the lecture
(S1 = S2 = S3) are equivalent, more precisely, that they are reducible to each other
in subquadratic time.
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8.8 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now it
is time to distribute the prey. Both, of course, should get the same number of rubies
and the same number of diamonds. On the other hand, it would be a pity to completely
disintegrate the beautiful necklace. Hence they want to use as few cuts as possible to
achieve a fair gem distribution.

To phrase the problem in a geometric (and somewhat more general) setting: Given
two finite sets R and D of points, construct a line that bisects both sets, that is, in either
halfplane defined by the line there are about half of the points from R and about half of
the points from D. To solve this problem, we will make use of the concept of levels in
arrangements.

Definition 8.18. Consider an arrangement A(L) induced by a set L of n non-vertical
lines in the plane. We say that a point p is on the k-level in A(L) if there are at
most k− 1 lines below and at most n− k lines above p. The 1-level and the n-level
are also referred to as lower and upper envelope, respectively.

Figure 8.8: The 3-level of an arrangement.

Another way to look at the k-level is to consider the lines to be real functions; then
the lower envelope is the pointwise minimum of those functions, and the k-level is defined
by taking pointwise the kth-smallest function value.

Theorem 8.19. Let R,D ⊂ R2 be finite sets of points. Then there exists a line that
bisects both R and D. That is, in either open halfplane defined by ` there are no
more than |R|/2 points from R and no more than |D|/2 points from D.

Proof. Without loss of generality suppose that both |R| and |D| are odd. (If, say, |R| is
even, simply remove an arbitrary point from R. Any bisector for the resulting set is also
a bisector for R.) We may also suppose that no two points from R ∪ D have the same
x-coordinate. (Otherwise, rotate the plane infinitesimally.)

Let R∗ and D∗ denote the set of lines dual to the points from R and D, respectively.
Consider the arrangement A(R∗). The median level of A(R∗) defines the bisecting lines
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for R. As |R| = |R∗| is odd, both the leftmost and the rightmost segment of this level
are defined by the same line `r from R∗, the one with median slope. Similarly there is a
corresponding line `d in A(D∗).

Since no two points from R∪D have the same x-coordinate, no two lines from R∗∪D∗
have the same slope, and thus `r and `d intersect. Consequently, being piecewise linear
continuous functions, the median level of A(R∗) and the median level of A(D∗) intersect
(see Figure 8.9 for an example). Any point that lies on both median levels corresponds
to a primal line that bisects both point sets simultaneously.

Figure 8.9: An arrangement of 3 green lines (solid) and 3 blue lines (dashed) and
their median levels (marked bold on the right hand side).

How can the thieves use Theorem 8.19? If they are smart, they drape the necklace
along some convex curve, say, a circle. Then by Theorem 8.19 there exists a line that
simultaneously bisects the set of diamonds and the set of rubies. As any line intersects
the circle at most twice, the necklace is cut at most twice.

However, knowing about the existence of such a line certainly is not good enough. It
is easy to turn the proof given above into an O(n2) algorithm to construct a line that
simultaneously bisects both sets. But we can do better. . .

8.9 Constructing Ham Sandwich Cuts in the Plane

The algorithm outlined below is not only interesting in itself but also because it illustrates
one of the fundamental general paradigms for designing optimization algorithms: prune
& search. The basic idea behind prune & search is to search the space of possible
solutions by at each step excluding some part of this space from further consideration.
For instance, if at each step a constant fraction of all possible solutions can be discarded
and a single step is linear in the number of solutions to be considered, then for the
runtime we obtain a recursion of the form

T(n) 6 cn+ T

(
n

(
1−

1

d

))
< cn

∞∑
i=0

(
d− 1

d

)i
= cn

1

1− d−1
d

= cdn ,
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that is, a linear time algorithm overall. Another well-known example of prune & search
is binary search: every step takes constant time and about half of the possible solutions
can be discarded, resulting in a logarithmic runtime overall.

Theorem 8.20 (Edelsbrunner and Waupotitsch [5]). Let R,D ⊂ R2 be finite sets of points
with n = |R|+ |D|. Then in O(n logn) time one can find a line ` that simultaneously
bisects R and D. That is, in either open halfplane defined by ` there are no more
than |R|/2 points from R and no more than |D|/2 points from D.

Proof. We describe a recursive algorithm find(L1, k1, L2, k2, (x1, x2)), for sets L1, L2 of
lines in R2, non-negative integers k1 and k2, and a real interval (x1, x2), to find an
intersection between the k1-level of A(L1) and the k2-level of A(L2), under the following
assumption that is called odd-intersection property : the k1-level of A(L1) and the k2-
level of A(L2) intersect an odd number of times in (x1, x2) and they do not intersect at
x ∈ {x1, x2}. Note that the odd-intersection property is equivalent to saying that the
level that is above the other at x = x1 is below the other at x = x2. In the end, we are
interested in find(R∗, (|R| + 1)/2,D∗, (|D| + 1)/2, (−∞,∞)). As argued in the proof of
Theorem 8.19, for these arguments the odd-intersection property holds.

First let L = L1 ∪ L2 and find a line µ with median slope in L. Denote by L< and
L> the lines from L with slope less than and greater than µ, respectively. Using an
infinitesimal rotation of the plane if necessary, we may assume without loss of generality
that no two points in R∪D have the same x-coordinate and thus no two lines in L have the
same slope. Pair the lines in L< with those in L> arbitrarily to obtain an almost perfect
matching in the complete bipartite graph on L< ∪ L>. Denote by I the b(|L<|+ |L>|)/2c
points of intersection generated by the pairs chosen, and let j be a point from I with
median x-coordinate.

Determine the intersection (j, y1) of the k1-level of L1 with the vertical line x = j

and the intersection (j, y2) of the k2-level of L2 with the vertical line x = j. If both
levels intersect at x = j, return the intersection and exit. Otherwise, if j ∈ (x1, x2),
then exactly one of the intervals (x1, j) or (j, x2) has the odd-intersection property, say4,
(x1, j). In other words, we can from now on restrict our focus to the halfplane x 6 j. The
case j /∈ (x1, x2) is no different, except that we simply keep the original interval (x1, x2).

In the following it is our goal to discard a constant fraction of the lines in L from
further consideration. To this end, let I> denote the set of points from I with x-coordinate
greater than j, and let µ ′ be a line parallel to µ such that about half of the points from
I> are above µ ′ (and thus the other about half of points from I> are below µ ′). We
consider the four quadrants formed by the two lines x = j and µ ′. By assumption the
odd-intersection property (for the k1-level of L1 and the k2-level of L2) holds for the
(union of the) left two quadrants. Therefore the odd-intersection property holds for
exactly one of the left two quadrants; we call this the interesting quadrant. Suppose
furthermore that the upper left quadrant Q2 is interesting. We will later argue how to
algorithmically determine the interesting quadrant (see Figure 8.10 for an example).

4The other case is completely symmetric and thus will not be discussed here.
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µ

L<

L>

I

x = j

µ ′

` ′

Q2

Q4

Figure 8.10: An example with a set L1 of 4 red lines and a set L2 of 3 blue lines.
Suppose that k1 = 3 and k2 = 2. Then the interesting quadrant is the
top-left one (shaded) and the red line ` ′ (the line with a smallest slope
in L1) would be discarded because it does not intersect the interesting
quadrant.

Then by definition of j and µ ′ about a quarter of the points from I are contained
in the opposite, that is, the lower right quadrant Q4. Any point in Q4 is the point of
intersection of two lines from L, exactly one of which has slope larger than µ ′. As no line
with slope larger than µ ′ that passes through Q4 can intersect Q2, any such line can be
discarded from further consideration. In this case, the lines discarded pass completely
below the interesting quadrant Q2. For every line discarded in this way from L1 or L2,
the parameter k1 or k2, respectively, has to be decreased by one. In the symmetric case
where the lines discarded pass above the interesting quadrant, the parameters k1 and k2
stay the same. In any case, about a 1/8-fraction of all lines in L is discarded. Denote
the resulting sets of lines (after discarding) by L ′1 and L ′2, and let k ′1 and k ′2 denote the
correspondingly adjusted levels.

We want to apply the algorithm recursively to compute an intersection between the
k ′1-level of L

′
1 and the k ′2-level of L

′
2. However, discarding lines changes the arrangement

and its levels. As a result, it is not clear that the odd-intersection property holds for
the k ′1-level of L

′
1 and the k ′2-level of L

′
2 on the interval (x1, j), or even on the original

interval (x1, x2). Note that we do know that these levels intersect in the interesting
quadrant, and this intersection persists because none of the involved lines is removed.
However, it is conceivable that the removal of lines changes the parity of intersections
in the non-interesting quadrant of the interval under consideration. Luckily, this issue
can easily be resolved as a part of the algorithm to determine the interesting quadrant,
which we will discuss next. More specifically, we will show how to determine a subinterval
(x ′1, x

′
2) ⊆ (x1, x2) on which the odd-intersection property holds for the k ′1-level of L

′
1

136



Geometry: C&A 2019 8.9. Constructing Ham Sandwich Cuts in the Plane

and the k ′2-level of L
′
2.

So let us argue how to determine the interesting quadrant, that is, how to test whether
the k1-level of L1 and the k2-level of L2 intersect an odd number of times in S(x1,j)∩H+

µ ,
where S(x1,j) is the vertical strip (x1, j)×R and H+

µ is the open halfplane above µ ′. For
this it is enough to trace µ ′ through the arrangement A(L) while keeping track of the
position of the two levels of interest. Initially, at x = x1 we know which level is above
the other. At every intersection of one of the two levels with µ ′, we can check whether
the ordering is still consistent with that initial ordering. For instance, if both were above
µ ′ initially and the level that was above the other intersects µ ′ first, we can deduce that
there must be an intersection of the two levels above µ ′. As the relative position of the
two levels is reversed at x = x2, at some point an inconsistency, that is, the presence of
an intersection will be detected and we will be able to tell whether it is above or below
µ ′. (There could be many more intersections between the two levels, but finding just one
intersection is good enough.) Along with this above/below information we also obtain a
suitable interval (x ′1, x

′
2) for which the odd-intersection property holds because the levels

of interest do not change in that interval.
The trace of µ ′ in A(L) can be computed by a sweep along µ ′, which amounts to

computing all intersections of µ ′ with the lines from L and sorting them by x-coordinate.
During the sweep we keep track of the number of lines from L1 below µ ′ and the number of
lines from L2 below µ ′. At every point of intersection, these counters can be adjusted and
any intersection with one of the two levels of interest is detected. Therefore computing
the trace takes O(|L| log |L|) time. This step dominates the whole algorithm, noting that
all other operations are based on rank-i element selection, which can be done in linear
time [4]. Altogether, we obtain as a recursion for the runtime

T(n) 6 cn logn+ T(7n/8) = O(n logn).

You can also think of the two point sets as a discrete distribution of a ham sandwich
that is to be cut fairly, that is, in such a way that both parts have the same amount of
ham and the same amount of bread. That is where the name “ham sandwich cut” comes
from. The theorem generalizes both to higher dimension and to more general types of
measures (here we study the discrete setting only where we simply count points). These
generalizations can be proven using the Borsuk-Ulam Theorem, which states that any
continuous map from Sd to Rd must map some pair of antipodal points to the same
point. For a proof of both theorems and many applications see Matoušek’s book [17].

Theorem 8.21. Let P1, . . . , Pd ⊂ Rd be finite sets of points. Then there exists a hy-
perplane H that simultaneously bisects all of P1, . . . , Pd. That is, in either open
halfspace defined by H there are no more than |Pi|/2 points from Pi, for every
i ∈ {1, . . . , d}.

This implies that the thieves can fairly distribute a necklace consisting of d types of
gems using at most d cuts.

In the plane, a ham sandwich cut can be found in linear time using a sophisticated
prune and search algorithm by Lo, Matoušek and Steiger [16]. But in higher dimension,
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the algorithmic problem gets harder. In fact, already for R3 the complexity of finding a
ham sandwich cut is wide open: The best algorithm known, from the same paper by Lo
et al. [16], has runtime O(n3/2 log2 n/ log∗ n) and no non-trivial lower bound is known.
If the dimension d is not fixed, it is both NP-hard and W[1]-hard5 in d to decide the
following question [15]: Given d ∈ N, finite point sets P1, . . . , Pd ⊂ Rd, and a point
p ∈

⋃d
i=1 Pi, is there a ham sandwich cut through p?

Exercise 8.22. The goal of this exercise is to develop a data structure for halfspace
range counting.

a) Given a set P ⊂ R2 of n points in general position, show that it is possible
to partition this set by two lines such that each region contains at most dn

4
e

points.

b) Design a data structure of size O(n) that can be constructed in time O(n logn)
and allows you, for any halfspace h, to output the number of points |P ∩ h| of
P contained in this halfspace h in time O(nα), for some 0 < α < 1.

Exercise 8.23. Prove or disprove the following statement: Given three finite sets
A,B,C of points in the plane, there is always a circle or a line that bisects A,
B and C simultaneously (that is, no more than half of the points of each set are
inside or outside the circle or on either side of the line, respectively).

8.10 Davenport-Schinzel Sequences

The complexity of a simple arrangement of n lines in R2 is Θ(n2) and so every algorithm
that uses such an arrangement explicitly needs Ω(n2) time. However, there are many
scenarios in which we do not need the whole arrangement but only some part of it. For
instance, to construct a ham sandwich cut for two sets of points in R2 one needs the
median levels of the two corresponding line arrangements only. As mentioned in the
previous section, the relevant information about these levels can actually be obtained in
linear time. Similarly, in a motion planning problem where the lines are considered as
obstacles we are only interested in the cell of the arrangement we are located in. There
is no way to ever reach any other cell, anyway.

This chapter is concerned with analyzing the complexity—that is, the number of
vertices and edges—of a single cell in an arrangement of n curves in R2. In case of a
line arrangement this is mildly interesting only: Every cell is convex and any line can
appear at most once along the cell boundary. On the other hand, it is easy to construct
an example in which there is a cell C such that every line appears on the boundary ∂C.

But when we consider arrangement of line segments rather than lines, the situation
changes in a surprising way. Certainly a single segment can appear several times along
the boundary of a cell, see the example in Figure 8.11. Make a guess: What is the
maximal complexity of a cell in an arrangement of n line segments in R2?

5Essentially this means that it is unlikely to be solvable in time O(f(d)p(n)), for an arbitrary function
f and a polynomial p.
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Figure 8.11: A single cell in an arrangement of line segments.

You will find out the correct answer soon, although we will not prove it here. But
my guess would be that it is rather unlikely that your guess is correct, unless, of course,
you knew the answer already. :-)

For a start we will focus on one particular cell of any arrangement that is very easy to
describe: the lower envelope or, intuitively, everything that can be seen vertically from
below. To analyze the complexity of lower envelopes we use a combinatorial descrip-
tion using strings with forbidden subsequences, so-called Davenport-Schinzel sequences.
These sequences are of independent interest, as they appear in a number of combinatorial
problems [2] and in the analysis of data structures [19]. The techniques used apply not
only to lower envelopes but also to arbitrary cells of arrangements.

Definition 8.24. An (n, s)-Davenport-Schinzel sequence, for n, s ∈ N, is a sequence over
an alphabet A of size n in which

� no two consecutive characters are the same and

� there is no alternating subsequence of the form . . . a . . . b . . . a . . . b . . . of s + 2
characters, for any a, b ∈ A.

Let λs(n) be the length of a longest (n, s)-Davenport-Schinzel sequence.

For example, abcbacb is a (3, 4)-DS sequence but not a (3, 3)-DS sequence because
it contains the subsequence bcbcb.

Proposition 8.25. λs(m) + λs(n) 6 λs(m+ n).

Proof. On the left hand side, we consider two Davenport-Schinzel sequences, one over
an alphabet A of size m and another over an alphabet B of size n. We may suppose that
A ∩ B = ∅ (for each character x ∈ A ∩ B introduce a new character x ′ and replace all
occurrences of x in the second sequence by x ′). Concatenating both sequences yields a
Davenport-Schinzel sequence over the alphabet A ∪ B of size m+ n.

Let us now see how Davenport-Schinzel sequences are connected to lower envelopes.
Consider a collection F = {f1, . . . , fn} of real-valued continuous functions that are defined
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on a common interval I ⊂ R. The lower envelope LF of F is defined as the pointwise
minimum of the functions fi, 1 6 i 6 n, over I. Suppose that any pair fi, fj, 1 6 i <

j 6 n, intersects in at most s points. Then I can be decomposed into a finite sequence
I1, . . . , I` of (maximal connected) pieces on each of which a single function from F defines
LF. Define the sequence φ(F) = (φ1, . . . , φ`), where fφi is the function from F which
defines LF on Ii.

Observation 8.26. φ(F) is an (n, s)-Davenport-Schinzel sequence.

In the case of line segments the above statement does not hold because a set of line
segments is in general not defined on a common real interval.

Proposition 8.27. Let F be a collection of n real-valued continuous functions, each of
which is defined on some real interval. If any two functions from F intersect in at
most s points then φ(F) is an (n, s+ 2)-Davenport-Schinzel sequence.

Proof. Let us first argue that we may suppose that the functions in F are piecewise
quadratic. Denote by P the set of points that are vertices of the arrangement induced by
the graphs of the functions in F. In other words, P is the set of all endpoints of functions
and intersection points of two functions from F. Let x1, . . . , xm denote the sequence of
x-coordinates of points from P, sorted in increasing order.

Consider the set Fi ⊆ F of functions that are defined on the interval [xi, xi+1], for
i ∈ {1, . . . ,m − 1}. By definition of P, no two functions intersect within the interval
(xi, xi+1), that is, throughout (xi, xi+1) the functions from Fi maintain the same total
(y-)order. We describe how to replace each function in Fi on [xi, xi+1] by a quadratic
function such that this order and therefore the combinatorics of the induced arrangement
remains unchanged.

Consider a function f ∈ Fi. If f is the only function in Fi that passes through both
points (xi, f(xi)) and (xi+1, f(xi+1)), then replace f by the line segment connecting these
two points. Otherwise, consider the set F of all functions in Fi that pass through both
points, and replace each function by a parabolic arc connecting the two points. These
parabolic arcs can be chosen so that they are pairwise disjoint within the open interval
(xi, xi+1) and all of them are infinitesimally close to the line segment between (xi, f(xi))
and (xi+1, f(xi+1)), while maintaining the total order among the functions in F within the
interval (xi, xi+1). The described replacement does not introduce any new intersection
(that is why we used different parabolic arcs) and maintains the order of functions at
any x-coordinate. In particular, φ(F) remains the same.

Now we are ready to prove the actual statement. The idea is to extend the func-
tions to be defined on all of R, without changing φ(F) too much, and then resort to
Observation 8.26.

Consider any function f ∈ F defined on an interval [a, b]. Extend f to R using almost
vertical rays pointing upward; from a use a ray of sufficiently small slope, from b use a
ray of sufficiently large slope. For all functions use the same slope on these two extensions
such that no extensions in the same direction intersect. By sufficiently small/large we
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mean that for any extension ray there is no endpoint of a function nor an intersection
point of two functions in the open angular wedge bounded by the extension ray and the
vertical ray starting from the same source. (There may be such points on the vertical
ray, but not in the open wedge between the two rays.) As any two functions intersect
only a finite number of times, there is only a finite number of endpoints and intersection
points to consider, and so “sufficiently small/large” is well-defined.

Denote the resulting collection of functions totally defined onR by F ′. If the extension
rays are sufficiently close to vertical then φ(F ′) = φ(F). (Recall that by our reasoning
from above we may regard each function as a parabolic arc or a line segment locally.)

For any f ∈ F ′ a single extension ray can create at most one additional intersection
with any g ∈ F ′. (Let [af, bf] and [ag, bg] be the intervals on which the function f and
g, respectively, was defined originally. Consider the ray r extending f from af to the left.
If af ∈ [ag, bg] then r may create a new intersection with g, if af > bg then r creates a
new intersection with the right extension of g from bg, and if af < ag then r does not
create any new intersection with g.)

On the other hand, for any pair s, t of segments, neither the left extension of the
leftmost segment endpoint nor the right extension of the rightmost segment endpoint
can introduce an additional intersection. Therefore, any pair of segments in F ′ intersects
at most s+ 2 times and the claim follows.

Next we will give an upper bound on the length of Davenport-Schinzel sequences for
small s.

Lemma 8.28. λ1(n) = n, λ2(n) = 2n− 1, and λ3(n) 6 2n(1+ logn).

Proof. λ1(n) = n is obvious. λ2(n) = 2n− 1 is given as an exercise. We prove λ3(n) 6
2n(1+ logn) = O(n logn).

For n = 1 it is λ3(1) = 1 6 2. For n > 1 consider any (n, 3)-DS sequence σ of length
λ3(n). Let a be a character that appears least frequently in σ. Clearly a appears at
most λ3(n)/n times in σ. Delete all appearances of a from σ to obtain a sequence σ ′ on
n−1 symbols. But σ ′ is not necessarily a DS sequence because there may be consecutive
appearances of a character b in σ ′, in case that σ = . . . bab . . ..
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Claim: There are at most two pairs of consecutive appearances of the same char-
acter in σ ′. Indeed, such a pair can be created around the first and last appearance
of a in σ only. If any intermediate appearance of a creates a pair bb in σ ′ then
σ = . . . a . . . bab . . . a . . ., in contradiction to σ being an (n, 3)-DS sequence.

Therefore, one can remove at most two characters from σ ′ to obtain a (n − 1, 3)-DS
sequence σ̃. As the length of σ̃ is bounded by λ3(n− 1), we obtain λ3(n) 6 λ3(n− 1) +
λ3(n)/n+ 2. Reformulating yields

λ3(n)

n︸ ︷︷ ︸
=: f(n)

6
λ3(n− 1)

n− 1︸ ︷︷ ︸
=f(n−1)

+
2

n− 1
6 1︸︷︷︸

=f(1)

+2

n−1∑
i=1

1

i
= 1+ 2Hn−1

and together with 2Hn−1 < 1+ 2 logn we obtain λ3(n) 6 2n(1+ logn).

Bounds for higher-order Davenport-Schinzel sequences. As we have seen, λ1(n) (no aba)
and λ2(n) (no abab) are both linear in n. It turns out that for s > 3, λs(n) is slightly
superlinear in n (taking s fixed). The bounds are known almost exactly, and they involve
the inverse Ackermann function α(n), a function that grows extremely slowly.

To define the inverse Ackermann function, we first define a hierarchy of functions
α1(n), α2(n), α3(n), . . . where, for every fixed k, αk(n) grows much more slowly than
αk−1(n):

We first let α1(n) = dn/2e. Then, for each k > 2, we define αk(n) to be the number
of times we must apply αk−1, starting from n, until we get a result not larger than 1. In
other words, αk(n) is defined recursively by:

αk(n) =

{
0, if n 6 1;
1+ αk(αk−1(n)), otherwise.

Thus, α2(n) = dlog2 ne, and α3(n) = log∗ n.
Now fix n, and consider the sequence α1(n), α2(n), α3(n), . . .. For every fixed n, this

sequence decreases rapidly until it settles at 3. We define α(n) (the inverse Ackermann
function) as the function that, given n, returns the smallest k such that αk(n) is at most
3:

α(n) = min {k | αk(n) 6 3}.

We leave as an exercise to show that for every fixed k we have αk(n) = o(αk−1(n))
and α(n) = o(αk(n)).

Coming back to the bounds for Davenport-Schinzel sequences, for λ3(n) (no ababa)
it is known that λ3(n) = Θ(nα(n)) [10]. In fact it is known that λ3(n) = 2nα(n) ±
O(n

√
α(n)) [14, 18]. For λ4(n) (no ababab) we have λ4(n) = Θ(n · 2α(n)) [3].

For higher-order sequences the known upper and lower bounds are almost tight, and
they are of the form λs(n) = n · 2poly(α(n)), where the degree of the polynomial in the
exponent is roughly s/2 [3, 18].
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Realizing DS sequences as lower envelopes. There exists a construction of a set of n seg-
ments in the plane whose lower-envelope sequence has length Ω(nα(n)). (In fact, the
lower-envelope sequence has length nα(n) − O(n), with a leading coefficient of 1; it is
an open problem to get a leading coefficient of 2, or prove that this is not possible.)

It is an open problem to construct a set of n parabolic arcs in the plane whose
lower-envelope sequence has length Ω(n · 2α(n)).

Generalizations of DS sequences. Also generalizations of Davenport-Schinzel sequences
have been studied, for instance, where arbitrary subsequences (not necessarily an al-
ternating pattern) are forbidden. For a word σ and n ∈ N define Ex(σ, n) to be the
maximum length of a word over A = {1, . . . , n}∗ that does not contain a subsequence of
the form σ. For example, Ex(ababa, n) = λ3(n). If σ consists of two letters only, say a
and b, then Ex(σ, n) is super-linear if and only if σ contains ababa as a subsequence [1].
This highlights that the alternating forbidden pattern is of particular interest.

Exercise 8.29. Prove that λ2(n) = 2n− 1.

Exercise 8.30. Prove that λs(n) is finite for all s and n.

8.11 Constructing lower envelopes

Theorem 8.31. Let F = {f1, . . . , fn} be a collection of real-valued continuous functions
defined on a common interval I ⊂ R such that no two functions from F intersect in
more than s points. Then the lower envelope LF can be constructed in O(λs(n) logn)
time. (Assuming that an intersection between any two functions can be constructed
in constant time.)

Proof. Divide and conquer. For simplicity, assume that n is a power of two. Split F

into two equal parts F1 and F2 and construct LF1 and LF2 recursively. The resulting
envelopes can be merged using line sweep by processing 2λs(n/2)+λs(n) 6 2λs(n) events
(the inequality 2λs(n/2) 6 λs(n) is by Proposition 8.25). Here the first term accounts
for events generated by the vertices of the two envelopes to be merged. The second
term accounts for their intersections, each of which generates a vertex of the resulting
envelope. Observe that no sorting is required and the sweep line status structure is of
constant size. Therefore, the sweep can be done in time linear in the number of events.

This yields the following recursion for the runtime T(n) of the algorithm. T(n) 6
2T(n/2) + cλs(n), for some constant c ∈ N. Using Proposition 8.25 it follows that
T(n) 6 c

∑logn
i=1 2

iλs(n/2
i) 6 c

∑logn
i=1 λs(n) = O(λs(n) logn).

Exercise 8.32. Show that every (n, s)-Davenport-Schinzel sequence can be realized as
the lower envelope of n continuous functions from R to R, every pair of which
intersect at most s times.

Exercise 8.33. Show that every Davenport-Schinzel sequence of order two can be re-
alized as a lower envelope of n parabolas.
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8.12 Complexity of a single face

Theorem 8.34. Let Γ = {γ1, . . . , γn} be a collection of Jordan arcs in R2 such that
each pair intersects in at most s points, for some s ∈ N. Then the combinatorial
complexity of any single face in the arrangement A(Γ) is O(λs+2(n)).

Proof. Consider a face f of A(Γ). In general, the boundary of f might consist of several
connected components. But as any single curve can appear in at most one component,
by Proposition 8.25 we may suppose that the boundary consists of one component only.

Replace each γi by two directed arcs γ+
i and γ−

i that together form a closed curve
that is infinitesimally close to γi. Denote by S the circular sequence of these oriented
curves, in their order along the (oriented) boundary ∂f of f.

Consistency Lemma. Let ξ be one of the oriented arcs γ+
i or γ−

i . The order of
portions of ξ that appear in S is consistent with their order along ξ. (That is, for each
ξ we can break up the circular sequence S into a linear sequence S(ξ) such that the
portions of ξ that correspond to appearances of ξ in S(ξ) appear in the same order along
ξ.)

ξ
ξ1

ξ2x1
x2

β

α

(a) f lies on the unbounded side of α ∪ β.

ξ
ξ1

ξ2x1
x2

β

α

(b) f lies on the bounded side of α ∪ β.

Figure 8.12: Cases in the Consistency Lemma.

Consider two portions ξ1 and ξ2 of ξ that appear consecutively in S (that is, there
is no other occurrence of ξ in between). Choose points x1 ∈ ξ1 and x2 ∈ ξ2 and connect
them in two ways: first by the arc α following ∂f as in S, and second by an arc β inside
the closed curve formed by γ+

i or γ−
i . The curves α and β do not intersect except at

their endpoints and they are both contained in the complement of the interior of f. In
other words, α ∪ β forms a closed Jordan curve and f lies either in the interior of this
curve or in its exterior. In either case, the part of ξ between ξ1 and ξ2 is separated
from f by α ∪ β and, therefore, no point from this part can appear anywhere along ∂f.
In other words, ξ1 and ξ2 are also consecutive boundary parts in the order of boundary
portions along ξ, which proves the lemma.

Break up S into a linear sequence S ′ = (s1, . . . , st) arbitrarily. For each oriented arc
ξ, consider the sequence s(ξ) of its portions along ∂f in the order in which they appear
along ξ. By the Consistency Lemma, s(ξ) corresponds to a subsequence of S, starting
at sk, for some 1 6 k 6 t. In order to consider s(ξ) as a subsequence of S ′, break up the
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symbol for ξ into two symbols ξ and ξ ′ and replace all occurrences of ξ in S ′ before sk
by ξ ′. Doing so for all oriented arcs results in a sequence S∗ on at most 4n symbols.

Claim: S∗ is a (4n, s+ 2)-Davenport-Schinzel sequence.
Clearly no two adjacent symbols in S∗ are the same. Suppose S∗ contains an alter-

nating subsequence σ = . . . ξ . . . η . . . ξ . . . η . . . of length s+4. For any occurrence of ξ in
this sequence, choose a point from the corresponding part of ∂f. This gives a sequence
x1, . . . , xd(s+4)/2e of points on ∂f. These points we can connect in this order by a Jordan
arc C(ξ) that stays within the closed curve formed by ξ and its counterpart—except for
the points x1, . . . , xd(s+4)/2e, which lie on this closed curve. Similarly we may choose
points y1, . . . , yb(s+4)/2c on ∂f that correspond to the occurrences of η in σ and con-
nect these points in this order by a Jordan arc C(η) that stays (except for the points
y1, . . . , yb(s+4)/2c) within the closed curve formed by η and its counterpart.

Now consider any four consecutive elements in σ and the corresponding points xi,
yi, xi+1, yi+1, which appear in this order—and, thus, can be regarded as connected by
an arc—along ∂f. In addition, the points xi and xi+1 are connected by an arc of C(ξ),
and similarly yi and yi+1 are connected by an arc of C(ξ). Both arcs, except for their
endpoints, lie in the exterior of f. Finally, we can place a point u into the interior of f
and connect u by pairwise interior-disjoint arcs to each of xi, yi, xi+1, and yi+1, such
that the relative interior of these four arcs stays in the interior of f. By construction,
no two of these arcs cross (intersect at a point that is not a common endpoint), except
possibly for the arcs xi, xi+1 and yi, yi+1 in the exterior of f. In fact, these two arcs
must intersect, because otherwise we are facing a plane embedding of K5, which does not
exist (Figure 8.13).

xi

xi+1

yi

yi+1

u
∂f

Figure 8.13: Every quadruple xi, yi, xi+1, yi+1 generates an intersection between the
curves ξ and η.

In other words, any quadruple of consecutive elements from the alternating subse-
quence induces an intersection between the corresponding arcs ξ and η. Clearly these
intersection points are pairwise distinct for any pair of distinct quadruples which alto-
gether provides s+ 4− 3 = s+ 1 points of intersection between ξ and η, in contradiction
to the assumption that these curves intersect in at most s points.
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Corollary 8.35. The combinatorial complexity of a single face in an arrangement of n
line segments in R2 is O(λ3(n)) = O(nα(n)).

Exercise 8.36.
a) Show that for every fixed k > 2 we have αk(n) = o(αk−1(n)); in fact, for

every fixed k and j we have αk(n) = o(αk−1(αk−1(· · ·αk−1(n) · · · ))), with j

applications of αk−1.

b) Show that for every fixed k we have α(n) = o(αk(n)).

It is a direct consequence of the symmetry in the definition that the property of being
a Davenport-Schinzel sequence is invariant under permutations of the alphabet. For
instance, σ = bcacba is a (3, 3)-DS sequence over A = {a, b, c}. Hence the permutation
π = (ab) induces a (3, 3)-DS sequence π(σ) = acbcab and similarly π ′ = (cba) induces
another (3, 3)-DS sequence π ′(σ) = abcbac.

When counting the number of Davenport-Schinzel sequences of a certain type we
want to count essentially distinct sequences only. Therefore we call two sequences over
a common alphabet A equivalent if and only if one can be obtained from the other
by a permutation of A. Then two sequences are distinct if and only if they are not
equivalent. A typical way to select a representative from each equivalence class is to
order the alphabet and demand that the first appearance of a symbol in the sequence
follows that order. For example, ordering A = {a, b, c} alphabetically demands that the
first occurrence of a precedes the first occurrence of b, which in turn precedes the first
occurrence of c.

Exercise 8.37. Let P be a convex polygon with n+1 vertices. Find a bijection between
the triangulations of P and the set of pairwise distinct (n, 2)-Davenport-Schinzel
sequences of maximum length (2n − 1). It follows that the number of distinct
maximum (n, 2)-Davenport-Schinzel sequences is exactly Cn−1 = 1

n

(
2n−2
n−1

)
, which is

the (n− 1)-st Catalan number.

Questions

37. How can one construct an arrangement of lines in R2? Describe the incre-
mental algorithm and prove that its time complexity is quadratic in the number of
lines (incl. statement and proof of the Zone Theorem).

38. How can one test whether there are three collinear points in a set of n given
points in R2? Describe an O(n2) time algorithm.

39. How can one compute the minimum area triangle spanned by three out of n
given points in R2? Describe an O(n2) time algorithm.

40. What is a ham sandwich cut? Does it always exist? How to compute it? State
and prove the theorem about the existence of a ham sandwich cut in R2 and sketch
the O(n logn) algorithm by Edelsbrunner and Waupotitsch.
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41. What is the endpoint visibility graph for a set of disjoint line segments in the
plane and how can it be constructed? Give the definition and explain the relation
to shortest paths. Describe the O(n2) algorithm by Welzl, including full proofs of
Theorem 8.11 and Theorem 8.14.

42. Is there a subquadratic algorithm for General Position? Explain the term
3-Sum hard and its implications and give the reduction from 3-Sum to General
Position.

43. Which problems are known to be 3-Sum-hard? List at least three problems
(other than 3-Sum) and briefly sketch the corresponding reductions.

44. What is an (n, s) Davenport-Schinzel sequence and how does it relate to the
lower envelope of real-valued continuous functions? Give the precise definition
and some examples. Explain the relationship to lower envelopes and how to apply
the machinery to partial functions like line segments.

45. What is the value of λ1(n) and λ2(n)?

46. What is the asymptotic value of λ3(n), λ4(n), and λs(n) for larger s?

47. What is the combinatorial complexity of the lower envelope of a set of n
lines/parabolas/line segments?

48. What is the combinatorial complexity of a single face in an arrangement of n
line segments? State the result and sketch the proof (Theorem 8.34).
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