
Chapter 9

A randomized Algorithm for Linear
Programming

Let us recall the setup from last lecture: we have a linear program of the form

(LP) maximize c>x

subject to Ax 6 b,
(9.1)

where c, x ∈ Rd (there are d variables), b ∈ Rn (there are n constraints), and A ∈ Rn×d.
The scenario that we are interested in here is that d is a (small) constant, while n tends
to infinity.

The goal of this lecture is to present a randomized algorithm (due to Seidel [2]) for
solving a linear program whose expected runtime is O(n). The constant behind the
big-O will depend exponentially on d, meaning that this algorithm is practical only for
small values of d.

To prepare the ground, let us first get rid of the unboundedness issue. We add to our
linear program a set of 2d constraints

−M 6 xi 6 M, i = 1, 2, . . . d, (9.2)

where M is a symbolic constant assumed to be larger than any real number that it is
compared with. Formally, this can be done by computing with rational functions in M

(quotients of polynomials of degree d in the “variable “M), rather than real numbers.
The original problem is bounded if and only if the solution of the new (and bounded)
problem does not depend on M. This is called the big-M method.

Now let H, |H| = n, denote the set of original constraints. For h ∈ H, we write the
corresponding constraint as ahx 6 bh.

Definition 9.3. For Q,R ⊆ H,Q∩R = ∅, let x∗(Q,R) denote the lexicographically largest
optimal solution of the linear program

LP(Q,R) maximize c>x

subject to ahx 6 bh, h ∈ Q

ahx = bh, h ∈ R

−M 6 xi 6 M, i = 1, 2, . . . , d.

149

Chapter 9. A randomized Algorithm for LP Geometry: C&A 2019

If this linear program has no feasible solution, we set x∗(Q,R) = ∞.

What does this mean? We delete some of the original constraints (the ones not in
Q∪R, and we require some of the constraints to hold with equality (the ones in R). Since
every linear equation ahx = bh can be simulated by two linear inequalities ahx 6 bh

and ahx > bh, this again assumes the form of a linear program. By the big-M method,
this linear program is bounded, but it may be infeasible. If it is feasible, there may
be several optimal solutions, but choosing the lexicographically largest one leads to a
unique solution x∗(Q,R).

Our algorithm will compute x∗(H, ∅), the lexicographically largest optimal solution
of (9.1) subject to the additional bounding-box constraint (9.2). We also assume that
x∗(H, ∅) 6= ∞, meaning that (9.1) is feasible. At the expense of solving an auxiliary
problem with one extra variable, this may be assumed w.l.o.g. (Exercise).

Exercise 9.4. Suppose that you have an algorithm A for solving feasible linear pro-
grams of the form

(LP) maximize c>x

subject to Ax 6 b,

where feasible means that there exists x̃ ∈ Rd such that Ax̃ 6 b. Extend algorithm
A such that it can deal with arbitrary (not necessarily feasible) linear programs of
the above form.

9.1 Helly’s Theorem

A crucial ingredient of the algorithm’s analysis is that the optimal solution x∗(H, ∅) is
already determined by a constant number (at most d) of constraints. More generally,
the following holds.

Lemma 9.5. Let Q,R ⊆ H,Q ∩ R = ∅, such that the constraints in R are independent.
This means that the set {x ∈ Rd : ahx = bh, h ∈ R} has dimension d− |R|.

If x∗(Q,R) 6= ∞, then there exists S ⊆ Q, |S| 6 d− |R| such that

x∗(S, R) = x∗(Q,R).

The proof uses Helly’s Theorem, a classic result in convexity theory.

Theorem 9.6 (Helly’s Theorem [1]). Let C1, . . . Cn be n > d + 1 convex subsets of Rd.
If any d + 1 of the sets have a nonempty common intersection, then the common
intersection of all n sets is nonempty.

Even in R1, this is not entirely obvious. There it says that for every set of intervals
with pairwise nonempty overlap there is one point contained in all the intervals. We will
not prove Helly’s Theorem here but just use it to prove Lemma 9.5.

150

Geometry: C&A 2019 9.2. Convexity, once more

Proof. (Lemma 9.5) The statement is trivial for |Q| 6 d − |R|, so assume |Q| > d − |R|.
Let

L(R) := {x ∈ Rd : ahx = bh, h ∈ R}

and

B := {x ∈ Rd : −M 6 xi 6 M, i = 1, . . . , d}.

For a vector x = (x1, . . . , xd), we define x0 = c>x, and we write x > x ′ if (x0, x1, . . . , xd)
is lexicographically larger than (x ′0, x

′
1, . . . , x

′
d).

Let x∗ = x∗(Q,R) and consider the |Q|+ 1 sets

Ch = {x ∈ Rd : ahx 6 bh} ∩ B ∩ L(R), h ∈ Q

and

C0 = {x ∈ Rd : x > x∗} ∩ B ∩ L(R).

The first observation (that may require a little thinking in case of C0) is that all these
sets are convex. The second observation is that their common intersection is empty.
Indeed, any point in the common intersection would be a feasible solution x̃ of LP(Q,R)
with x̃ > x∗ = x∗(Q,R), a contradiction to x∗(Q,R) being the lexicographically largest
optimal solution of LP(Q,R). The third observation is that since L(R) has dimension
d− |R|, we can after an affine transformation assume that all our |Q|+ 1 convex sets are
actually convex subsets of Rd−|R|.

Then, applying Helly’s Theorem yields a subset of d − |R| + 1 constraints with an
empty common intersection. Since all the Ch do have x∗(Q,R) in common, this set of
constraints must contain C0. This means, there is S ⊆ Q, |S| = d− |R| such that

x ∈ Ch ∀h ∈ S ⇒ x /∈ C0.

In particular, x∗(S, R) ∈ Ch for all h ∈ S, and so it follows that x∗(S, R) 6 x∗ = x∗(Q,R).
But since S ⊆ Q, we also have x∗(S, R) > x∗(Q,R), and x∗(S, R) = x∗(Q,R) follows.

9.2 Convexity, once more

We need a second property of linear programs on top of Lemma 9.5; it is also a conse-
quence of convexity of the constraints, but a much simpler one.

Lemma 9.7. Let Q,R ⊆ H,Q ∩ R 6= ∅ and x∗(Q,R) 6= ∞. Let h ∈ Q. If

ahx
∗(Q \ {h}, R) > bh,

then

x∗(Q,R) = x∗(Q \ {h}, R ∪ {h}).

151

Chapter 9. A randomized Algorithm for LP Geometry: C&A 2019

Before we prove this, let us get an intuition. The vector x∗(Q \ {h}, R) is the optimal
solution of LP(Q \ {h}, R). And the inequality ahx

∗(Q \ {h}, R) > bh means that the
constraint h is violated by this solution. The implication of the lemma is that at the
optimal solution of LP(Q,R), the constraint h must be satisfied with equality in which
case this optimal solution is at the same time the optimal solution of the more restricted
problem LP(Q \ {h}, R ∪ {h}).

Proof. Let us suppose for a contradition that

ahx
∗(Q,R) < bh

and consider the line segment s that connects x∗(Q,R) with x∗(Q \ {h}, R). By the
previous strict inequality, we can make a small step (starting from x∗(Q,R)) along this
line segment without violating the constraint h (Figure 9.1). And since both x∗(Q,R)
as well as x∗(Q \ {h}, R) satisfy all other constraints in (Q \ {h}, R), convexity of the
constraints implies that this small step takes us to a feasible solution of LP(Q,R) again.
But this solution is lexicographically larger than x∗(Q,R), since we move towards the
lexicographically larger vector x∗(Q \ {h}, R); this is a contradiction.

x (Q\{h}, R)

x (Q, R)*

*

s

h

Figure 9.1: Proof of Lemma 9.7

9.3 The Algorithm

The algorithm reduces the computation of x∗(H, ∅) to the computation of x∗(Q,R) for
various sets Q,R, where R is an independent set of constraints. Suppose you want to
compute x∗(Q,R) (assuming that x∗(Q,R) 6= ∞). If Q = ∅, this is “easy”, since we have
a constant-size problem, defined by R with |R| 6 d and 2d bounding-box constraints
−M 6 xi 6 M.

152

Geometry: C&A 2019 9.4. Runtime Analysis

Otherwise, we choose h ∈ Q and recursively compute x∗(Q \ {h}, R) 6= ∞. We then
check whether constraint h is violated by this solution. If not, we are done, since then
x∗(Q\{h}, R) = x∗(Q,R) (Think about why!). But if h is violated, we can use Lemma 9.7
to conclude that x∗(Q,R) = x∗(Q \ {h}, R ∪ {h}), and we recursively compute the latter
solution. Here is the complete pseudocode.

LP(Q,R):
IF Q = ∅ THEN

RETURN x∗(∅, R)
ELSE

choose h ∈ Q uniformly at random
x∗ := LP(Q \ {h}, R)
IF ahx

∗ 6 bh THEN
RETURN x∗

ELSE
RETURN LP(Q \ {h}, R ∪ {h})

END
END

To solve the original problem, we call this algorithm with LP(H, ∅). It is clear that
the algorithm terminates since the first argument Q becomes smaller in every recursive
call. It is also true (Exercise) that every set R that comes up during this algorithm is
indeed an independent set of constraints and in particular has at most d elements. The
correctness of the algorithm then follows from Lemma 9.7.

Exercise 9.8. Prove that all sets R of constraints that arise during a call to algorithm
LP(H, ∅) are independent, meaning that the set

{x ∈ Rd : ahx = bh, h ∈ R}

of points that satisfy all constraints in R with equality has dimension d− |R|.

9.4 Runtime Analysis

Now we get to the analysis of algorithm LP, and this will also reveal why the random
choice is important.

We will analyze the algorithm in terms of the expected number of violation tests
ahx

∗ 6 bh, and in terms of the expected number of basis computations x∗(∅, R) that
it performs. This is a good measure, since these are the dominating operations of the
algorithm. Moreover, both violation test and basis computation are “cheap” operations
in the sense that they can be performed in time f(d) for some f.

153

Chapter 9. A randomized Algorithm for LP Geometry: C&A 2019

More specifically, a violation test can be performed in time O(d); the time needed
for a basis computation is less clear, since it amounts to solving a small linear program
itself. Let us suppose that it is done by brute-force enumeration of all vertices of the
bounded polyhedron defined by the at most 3d (in)equalities

ahx = bh, h ∈ R

and

−M 6 xi 6 M, i = 1, . . . , d.

9.4.1 Violation Tests

Lemma 9.9. Let T(n, j) be the maximum expected number of violation tests performed
in a call to LP(Q,R) with |Q| = n and |R| = d− j. For all j = 0, . . . , d,

T(0, j) = 0

T(n, j) 6 T(n− 1, j) + 1+
j

n
T(n− 1, j− 1), n > 0.

Note that in case of j = 0, we may get a negative argument on the right-hand side,
but due to the factor 0/n, this does not matter.

Proof. If |Q| = ∅, there is no violation test. Otherwise, we recursively call LP(Q\ {h}, R)
for some h which requires at most T(n− 1, j) violation tests in expectation. Then there
is one violation test within the call to LP(Q,R) itself, and depending on the outcome, we
perform a second recursive call LP(Q \ {h}, R ∪ {h}) which requires an expected number
of at most T(n − 1, j − 1) violation tests. The crucial fact is that the probability of
performing a second recursive call is at most j/n.

To see this, fix some S ⊆ Q, |S| 6 d − |R| = j such that x∗(Q,R) = x∗(S, R). Such a
set S exists by Lemma 9.5. This means, we can remove from Q all constraints except
the ones in S, without changing the solution.

If h 6∈ S, we thus have

x∗(Q,R) = x∗(Q \ {h}, R),

meaning that we have already found x∗(Q,R) after the first recursive call; in particular,
we will then have ahx

∗ 6 bh, and there is no second recursive call. Only if h ∈ S (and
this happens with probability |S|/n 6 j/n), there can be a second recursive call.

The following can easily be verified by induction.

Theorem 9.10.

T(n, j) 6
j∑

i=0

1

i!
j!n.

Since
∑j

i=0
1
i! 6

∑∞
i=0

1
i! = e, we have T(n, j) = O(j!n). If d > j is constant, this is

O(n).

154

Geometry: C&A 2019 9.4. Runtime Analysis

9.4.2 Basis Computations

To count the basis computations, we proceed as in Lemma 9.9, except that the “1” now
moves to a different place.

Lemma 9.11. Let B(n, j) be the maximum expected number of basis computations
performed in a call to LP(Q,R) with |Q| = n and |R| = d− j. For all j = 0, . . . , d,

B(0, j) = 1

B(n, j) 6 B(n− 1, j) +
j

n
B(n− 1, j− 1), n > 0.

Interestingly, B(n, j) turns out to be much smaller than T(n, j) which is good since a
basic computation is much more expensive than a violation test. Here is the bound that
we get.

Theorem 9.12.

B(n, j) 6 (1+Hn)
j = O(logj n),

where Hn is the n-th Harmonic number.

Proof. This is also a simple induction, but let’s do this one since it is not entirely obvious.
The statement holds for n = 0 with the convention that H0 = 0. It also holds for j = 0,
since Lemma 9.11 implies B(n, 0) = 1 for all n. For n, j > 0, we inductively obtain

B(n, j) 6 (1+Hn−1)
j +

j

n
(1+Hn−1)

j−1

6
j∑

k=0

(
j

k

)
(1+Hn−1)

j−k(
1

n
)k

= (1+Hn−1 +
1

n
)j = (1+Hn)

j.

The second inequality uses the fact that the terms (1+Hn−1)
j and j

n
(1+Hn−1)

j−1 are
the first two terms of the sum in the second line.

9.4.3 The Overall Bound

Putting together Theorems 9.10 and 9.12 (for j = d, corresponding to the case R = ∅),
we obtain the following

Theorem 9.13. A linear program with n constraints in d variables (d a constant) can
be solved in time O(n).

155

Chapter 9. A randomized Algorithm for LP Geometry: C&A 2019

Questions

49. What is Helly’s Theorem? Give a precise statement and outline the application
of the theorem for linear programming (Lemma 9.5).

50. Outline an algorithm for solving linear programs ! Sketch the main steps of
the algorithm and the correctness proof! Also explain how one may achieve the
preconditions of feasibility and boundedness.

51. Sketch the analysis of the algorithm! Explain on an intuitive level how ran-
domization helps, and how the recurrence relations for the expected number of
violation tests and basis computations are derived. What is the expected runtime
of the algorithm?

References

[1] Herbert Edelsbrunner, Algorithms in combinatorial geometry , vol. 10 of EATCS
Monographs on Theoretical Computer Science, Springer, 1987.

[2] Raimund Seidel, Small-dimensional linear programming and convex hulls made easy.
Discrete Comput. Geom., 6, (1991), 423–434.

156

https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1007/BF02574699

	Fundamentals
	Models of Computation
	Basic Geometric Objects
	Graphs

	Plane Embeddings
	Drawings, Embeddings and Planarity
	Graph Representations
	The Doubly-Connected Edge List
	Manipulating a DCEL
	Graphs with Unbounded Edges
	Combinatorial Embeddings

	Unique Embeddings
	Triangulating a Plane Graph
	Compact Straight-Line Drawings
	Canonical Orderings
	The Shift-Algorithm
	Remarks and Open Problems

	Polygons
	Classes of Polygons
	Polygon Triangulation
	The Art Gallery Problem
	Optimal Guarding

	Convexity and Convex Hulls
	Convexity
	Classic Theorems for Convex Sets
	Planar Convex Hull
	Trivial algorithms
	Jarvis' Wrap
	Graham Scan (Successive Local Repair)
	Lower Bound
	Chan's Algorithm

	Delaunay Triangulations
	The Empty Circle Property
	The Lawson Flip algorithm
	Termination of the Lawson Flip Algorithm: The Lifting Map
	Correctness of the Lawson Flip Algorithm
	The Delaunay Graph
	Every Delaunay Triangulation Maximizes the Smallest Angle
	Constrained Triangulations

	Delaunay Triangulation: Incremental Construction
	Incremental construction
	The History Graph
	Analysis of the algorithm

	Voronoi Diagrams
	Post Office Problem
	Voronoi Diagram
	Duality
	Lifting Map
	Planar Point Location
	Kirkpatrick's Hierarchy

	Line Arrangements
	Arrangements
	Construction
	Zone Theorem
	The Power of Duality
	Rotation Systems—Sorting all Angular Sequences
	Segment Endpoint Visibility Graphs
	3-Sum
	Ham Sandwich Theorem
	Constructing Ham Sandwich Cuts in the Plane
	Davenport-Schinzel Sequences
	Constructing lower envelopes
	Complexity of a single face

	A randomized Algorithm for Linear Programming
	Helly's Theorem
	Convexity, once more
	The Algorithm
	Runtime Analysis
	Violation Tests
	Basis Computations
	The Overall Bound

	Crossings
	Linear Programming
	Linear Separability of Point Sets
	Linear Programming
	Minimum-area Enclosing Annulus
	Solving a Linear Program

	Line Sweep
	Interval Intersections
	Segment Intersections
	Improvements
	Algebraic degree of geometric primitives
	Red-Blue Intersections

	The Configuration Space Framework
	The Delaunay triangulation — an abstract view
	Configuration Spaces
	Expected structural change
	Bounding location costs by conflict counting
	Expected number of conflicts

	Trapezoidal Maps
	The Trapezoidal Map
	Applications of trapezoidal maps
	Incremental Construction of the Trapezoidal Map
	Using trapezoidal maps for point location
	Analysis of the incremental construction
	Defining The Right Configurations
	Update Cost
	The History Graph
	Cost of the Find step
	Applying the General Bounds

	Analysis of the point location
	The trapezoidal map of a simple polygon

	Translational Motion Planning
	Complexity of Minkowski sums
	Minkowski sum of two convex polygons
	Constructing a single face

	Counting
	Introduction
	Embracing k-Sets in the Plane
	Adding a Dimension
	The Upper Bound
	Faster Counting—Another Vector
	Characterizing All Possibilities
	Some Add-Ons

	Smallest Enclosing Balls
	The trivial algorithm
	Welzl's Algorithm
	The Swiss Algorithm
	The Forever Swiss Algorithm
	Smallest Enclosing Balls in the Manhattan Distance

	Epsilon Nets
	Motivation
	Range spaces and -nets.
	Either almost all is needed or a constant suffices.
	What makes the difference: VC-dimension
	VC-dimension of Geometric Range Spaces
	Small -Nets, an Easy Warm-up Version
	Even Smaller -Nets

