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It is also possible to triangulate a geometric graph in linear time. But this
problem is much more involved. Triangulating a single face of a geometric
graph amounts to what is called “triangulating a simple polygon”. This can
be done in near-linear3 time using standard techniques, and in linear time
using Chazelle’s famous algorithm, whose description spans a fourty pages paper [9].

Exercise 2.35. We discussed the DCEL structure to represent plane graphs in Sec-
tion 2.2.1. An alternative way to represent an embedding of a maximal planar
graph is the following: For each triangle, store references to its three vertices and
to its three neighboring triangles. Compare both approaches. Discuss different sce-
narios where you would prefer one over the other. In particular, analyze the space
requirements of both.

Connectivity serves as an important indicator for properties of planar graphs. Al-
ready Wagner showed that a 4-connected graph is planar if and only if it does not contain
K5 as a minor. That is, assuming 4-connectivity the second forbidden minor K3,3 be-
comes “irrelevant”. For subdivisions this is a different story. Independently Kelmans
and Semour conjectured in the 1970s that 5-connectivity allows to consider K5 subdi-
visions only. This conjecture was proven only recently4 by Dawei He, Yan Wang, and
Xingxing Yu.

Theorem 2.36 (He-Wang-Yu [18]). Every 5-connected nonplanar graph contains a sub-
division of K5.

Exercise 2.37. Give a 4-connected nonplanar graph that does not contain a subdivision
of K5.

Another example that illustrates the importance of the parameter connectivity is the
following famous theorem of Tutte that provides a sufficient condition for Hamiltonicity.

Theorem 2.38 (Tutte [32]). Every 4-connected planar graph is Hamiltonian.

Moreover, for a given 4-connected planar graph a Hamiltonian cycle can also be
computed in linear time [10].

2.5 Compact Straight-Line Drawings

As a next step we consider plane embeddings in the geometric setting, where every edge
is drawn as a straight-line segment. A classical theorem of Wagner and Fáry states that
this is not a restriction in terms of plane embeddability.

Theorem 2.39 (Fáry [13], Wagner [33]). Every planar graph has a plane straight-line
embedding.

3O(n logn) or—using more elaborate tools—O(n log⇤ n) time
4The result was announced in 2015 and published in 2020.
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This statement is quite surprising, considering how much more freedom arbitrarily
complex Jordan arcs allow compared to line segments, which are completely determined
by their endpoints. In order to further increase the level of appreciation, let us note that
a similar “straightening” is not possible when fixing the point set on which the vertices
are to be embedded: Pach and Wenger [27] showed that for a given planar graph G
on n vertices v1, . . . , vn and a given set {p1, . . . , pn} ⇢ R2 of n points, one can always
find a plane embedding of G such that vi 7! pi, for all i 2 {1, . . . , n}. However, this is
not possible in general with a plane straight-line embedding. For instance, K4 does not
admit a plane straight-line embedding on a set of points that form a convex quadrilateral,
such as a rectangle. In fact, it is NP-hard to decide whether a given planar graph admits
a plane straight-line embedding on a given point set [7].

Exercise 2.40. a) Show that for every natural number n > 4 there exist a planar graph
G on n vertices and a set P ⇢ R2 of n points in general position (no three points
are collinear) so that G does not admit a plane straight-line embedding on P.

b) Show that for every natural number n > 6 there exist a planar graph G on n
vertices and a set P ⇢ R2 of n points so that (1) P is in general position (no three
points are collinear); (2) P has a triangular convex hull (that is, there are three
points in P that form a triangle that contains all other points from P); and (3) G
does not admit a plane straight-line embedding on P.

Exercise 2.41. Show that for every set P ⇢ R2 of n > 3 in general position (no
three points are collinear) the cycle Cn on n vertices admits a plane straight-line
embedding on P.

Although Fáry-Wagner’s theorem has a nice inductive proof, we will not discuss it
here. Instead we will prove a stronger statement that implies Theorem 2.39.

A very nice property of straight-line embeddings is that they are easy to represent:
We need to store points/coordinates for the vertices only. From an algorithmic and com-
plexity point of view the space needed by such a representation is important because
it appears in the input and output size of algorithms that work on embedded graphs.
While the Fáry-Wagner Theorem guarantees the existence of a plane straight-line em-
bedding for every planar graph, it does not provide bounds on the size of the coordinates
used in the representation. But the following strengthening provides such bounds, by
describing an algorithm that embeds (without crossings) a given planar graph on a linear
size integer grid.

Theorem 2.42 (de Fraysseix, Pach, Pollack [15]). Every planar graph on n > 3 vertices
has a plane straight-line drawing on the (2n- 3)⇥ (n- 1) integer grid.

2.5.1 Canonical Orderings

The key concept behind the algorithm is the notion of a canonical ordering, which is a
vertex order that allows to construct a plane drawing in a natural (hence canonical) way.
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Reading it backwards one may think of a shelling or peeling order that destructs the
graph vertex by vertex from the outside. A canonical ordering also provides a succinct
representation for the combinatorial embedding.

Definition 2.43. A plane graph is internally triangulated if it is biconnected and every
bounded face is a (topological) triangle. Let G be an internally triangulated plane
graph and C�(G) its outer cycle. A permutation ⇡ = (v1, v2, . . . , vn) of V(G) is a
canonical ordering for G if it satisfies the following three conditions:

(CO1) Gk is internally triangulated, for all k 2 {3, . . . , n};

(CO2) v1v2 is on the outer cycle C�(Gk) of Gk, for all k 2 {3, . . . , n}; and

(CO3) vk+1 is located in the outer face of Gk, for all k 2 {3, . . . , n- 1};

where Gk is the subgraph of G induced by v1, . . . , vk.

Figure 2.18 shows an example. Note that there are permutations that do not cor-
respond to a canonical order: for instance, when choosing the vertex 4 as the next
vertex to be removed in Figure 2.18b, the resulting graph G 0

7 = G[{1, 2, 3, 5, 6, 7, 8}] is
not biconnected (because 1 is a cut-vertex).
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(b) G8.

Figure 2.18: An internally triangulated plane graph with a canonical ordering.

Theorem 2.44. For every internally triangulated plane graph G and every edge v1v2
on its outer cycle, there exists a canonical ordering for G that starts with v1, v2.
Moreover, such an ordering can be computed in linear time.

Proof. Induction on n, the number of vertices. For a triangle, any order suffices and so
the statement holds. Hence consider an internally triangulated plane graph G = (V, E)
on n > 4 vertices. We claim that it is enough to select a vertex vn /2 {v1, v2} on C�(G)
that is not incident to a chord of C�(G) and then apply induction on G \ {vn}.

We will show later that such a vertex vn always exists. First let us prove the claim.
We need to argue that if vn is selected as described
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(i) the plane graph Gn-1 := G \ {vn} is internally triangulated,

(ii) the given edge {v1, v2} is on the outer cycle C�(Gn-1) of Gn-1, and

(iii) we can extend the inductively obtained canonical ordering for Gn-1 with vn to
obtain a canonical ordering for G.

Property (ii) is an immediate consequence of vn /2 {v1, v2}. Regarding (iii) note that
(CO1)–(CO3) hold for k = n: The first two by assumption of the theorem (where we
assume that G is internally triangulated and that v1v2 is an edge of its outer cycle),
and (CO3) is trivial (because it applies to k 6 n - 1 only). Hence to be able to apply
induction it suffices to show (i).

The way Gn-1 is obtained from G, every bounded face f of Gn-1 also appears as a
bounded face of G. As G is internally triangulated, f is a triangle. It remains to show
that Gn-1 is biconnected.

Consider the circular sequence of neighbors around vn in G and break it into a
linear sequence u1, . . . , um, for some m > 2, that starts and ends with the neighbors
of vn in C�(G). As G is internally triangulated, each of the bounded faces spanned
by vn, ui, ui+1, for i 2 {1, . . . ,m - 1}, is a triangle and hence {ui, ui+1} 2 E. The outer
cycle C�(Gn-1) of Gn-1 is obtained from C�(G) by removing vn and replacing it with the
(possibly empty) sequence u2, . . . , um-1. As vn is not incident to a chord of C�(G) (and
so neither of u2, . . . , um-1 appeared along C�(G) already), the resulting sequence forms
a cycle, indeed. Add a new vertex v in the outer face of Gn-1 and connect v to every
vertex of C�(Gn-1) to obtain a maximal planar graph H � Gn-1. By Theorem 2.32 the
graph H is 3-connected and so Gn-1 is biconnected, as desired. This also completes the
proof of the claim.

Next let us show that we can always find a vertex vn /2 {v1, v2} on C�(G) that is not
incident to a chord of C�(G). If C�(G) does not have any chord, this is obvious because
every cycle has at least three vertices, one of which is neither v1 nor v2. So suppose
that C�(G) has a chord c. The endpoints of c split C�(G) into two paths, one of which
does not have v1 nor v2 as an internal vertex. We call this path the path associated
to c. (Such a path has at least two edges because there is always at least one vertex
“behind” a chord.) Among all chords of C�(G) we select c such that its associated path
has minimal length. Then by this choice of c its associated path together with c forms an
induced cycle in G. In particular, none of the (at least one) interior vertices of the path
associated to c is incident to a chord of C�(G) because such a chord would either cross c
or it would have an associated path that is strictly shorter than the one associated to c.
So we can select vn from these vertices. By definition the path associated to c does not
contain v1 nor v2, hence this procedure does not select either of these vertices.

Regarding the runtime bound, we maintain for each vertex v whether it is on the
current outer cycle and what is the number of incident chords with respect to the current
outer cycle. Given a combinatorial embedding of G, it is straighforward to initialize
this information in linear time. (Every edge is considered at most twice, once for each
endpoint on the outer cycle.) We also maintain an unordered list of the eligible vertices,
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that is, those vertices that are on the outer cycle and not incident to any chord. This list
is straightforward to maintain: Whenever a vertex information is updated, check before
and after the update whether it is eligible and correspondingly add it to or remove it
from the list of eligible vertices. We store with each vertex a pointer to its position in the
list (nil if it is not eligible currently) so that we can remove it from the list in constant
time if needed.

When removing a vertex vn from G, there are two cases: Either vn has two neighbors
u1 and u2 only (Figure 2.19a), in which case the edge u1u2 ceases to be a chord. Thus,
the chord count for u1 and u2 has to be decremented by one. Otherwise, there are
m > 3 neighbors u1, . . . , nm (Figure 2.19b) and (1) all vertices u2, . . . , um-1 are new
on the outer cycle, and (2) every edge incident to ui, for i 2 {2, . . . ,m - 1}, and some
other vertex on the outer cycle other than ui-1 or ui+1 is a new chord. These latter
changes have to be reflected in the chord counters at the vertices. So to update these
counters, we inspect all edges incident to one of u2, . . . , um-1. For each such edge, we
check whether the other endpoint is on the outer cycle and, if so, increment the counter.

vn
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u2

C�(G)
(a)
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u1
u6

C�(G)

(b)

Figure 2.19: Processing a vertex when computing a canonical ordering.

During the course of the algorithm every vertex appears once as a new vertex on the
outer cycle. At this point all incident edges (in the current graph Gi) are examined.
Similarly, when a vertex vk is removed from GK, all edges incident to vk in Gk are
inspected; and each vertex is removed at most once. Therefore, every edge is inspected
at most three times: when one of its two endpoints appears first on the outer cycle, and
when the first endpoint (and therefore the edge) is removed. Altogether this takes linear
time because the number of edges in G is linear by Corollary 2.5.

Using one of the linear time planarity testing algorithms, we can obtain a combina-
torial embedding for a given maximal planar graph G. As every maximal plane graph
is internally triangulated, we can then use Theorem 2.44 to provide us with a canonical
ordering for G, in overall linear time.

Corollary 2.45. Every maximal planar graph admits a canonical ordering. Moreover,
such an ordering can be computed in linear time.

Exercise 2.46. (a) Compute a canonical ordering for the following internally trian-
gulated plane graphs:

41



Chapter 2. Plane Embeddings Geometry: C&A 2022

(b) Give an infinite family of internally triangulated plane graphs Gn on n = 2k
vertices with at least k! canonical orderings.

(c) Give an infinite family of internally triangulated plane graphs that have a
unique canonical ordering for a specific choice of the starting edge v1v2.

Exercise 2.47. (a) Describe a plane graph G with n vertices that can be embedded
(while preserving the outer face) on a grid of size (2n/3- 1)⇥ (2n/3- 1) but
not on a smaller grid.

(b) Can you draw G on a smaller grid if you are allowed to change the embedding?

As simple as they may appear, canonical orderings are a powerful and versatile tool
to work with plane graphs. As an example, consider the following partitioning theorem.

Theorem 2.48 (Schnyder [30]). For every maximal planar graph G on at least three
vertices and every fixed face f of G, the multigraph obtained from G by doubling
the (three) edges of f can be partitioned into three spanning trees.

Exercise 2.49. Prove Theorem 2.48. Hint: Take a canonical ordering and build one
tree by taking for every vertex vk the edge to its first neighbor on the outer cycle
C�(Gk-1).

Of a similar flavor is the following question.

Problem 2.50 (In memoriam Ferran Hurtado (1951–2014)).
Can every complete geometric graph on n = 2k vertices (the complete straight line graph
on a set of n points in general position) be partitioned into k plane spanning trees?

There are several positive results for special point sets [1, 5], and it is also known
that there are always bn/3c edge disjoint plane spanning trees [4]. The general statement
above has been refuted very recently [26]. However, it remains open if there always exists
a partition into k + 1 plane spanning trees—or more generally, what is the minimum
number of plane spanning trees that always suffices.
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