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2.5.2 The Shift-Algorithm

Let (v1, . . . , vn) be a canonical ordering. The general plan is to construct an embedding
by inserting vertices in this order, starting from the triangle P(v1) = (0, 0), P(v3) = (1, 1),
P(v2) = (2, 0); see Figure 2.20.

P(v3) = (1, 1)

P(v2) = (2, 0)P(v1) = (0, 0)

Figure 2.20: Initialization of the shift algorithm.

At each step, some vertices will be shifted to the right, making room for the edges to
the freshly inserted vertex. For each vertex vi already embedded, maintain a set L(vi)
of vertices that move rigidly together with vi. Initially L(vi) = {vi}, for 1 6 i 6 3.

Ensure that the following invariants hold after Step k (that is, after vk has been
inserted):

(i) P(v1) = (0, 0), P(v2) = (2k- 4, 0);

(ii) The x-coordinates of the points on C�(Gk) = (w1, . . . , wt), where w1 = v1 and
wt = v2, are strictly increasing (in this order)5;

(iii) each edge of C�(Gk) is drawn as a straight-line segment with slope ±1.

Clearly these invariants hold for G3, embedded as described above. Invariant (i) implies
that after Step n we have P(v2) = (2n - 4, 0), while (iii) implies that the Manhattan
distance6 between any two points on C�(Gk) is even.

Idea: put vk+1 at µ(wp, wq), where wp, . . . , wq are its neighbors on C�(Gk) and

µ((xp, yp), (xq, yq)) =
1

2
(xp - yp + xq + yq,-xp + yp + xq + yq)

is the point of intersection between the line `1 : y = x - xp + yp of slope 1 through
wp = (xp, yp) and the line `2 : y = xq - x+ yq of slope -1 through wq = (xq, yq).

Proposition 2.51. If the Manhattan distance between wp and wq is even, then µ(wp, wq)
is on the integer grid.

Proof. By Invariant (ii) we know that xp < xq. Suppose without loss of generality
that yp 6 yq. The Manhattan distance d of wp and wq is xq - xp + yq - yp, which by

5The notation is a bit sloppy here because both t and the wi in general depend on k. So in principle
we should write wk

i instead of wi. But as the k would just make a constant appearance throughout, we
omit it to avoid index clutter.

6The Manhattan distance of two points (x1, y1) and (x2, y2) is |x2 - x1|+ |y2 - y1|.
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assumption is an even number. Adding the even number 2xp to d yields the even number
xq + xp + yq - yp, half of which is the x-coordinate of µ((xp, yp), (xq, yq)). Adding the
even number 2yp to d yields the even number xq - xp + yq + yp, half of which is the
y-coordinate of µ((xp, yp), (xq, yq)).

After Step n we have P(vn) = (n- 2, n- 2) because vn is a neighbor of both v1 and
v2. However, P(vk+1) may not “see” all of wp, . . . , wq, in case that the slope of wpwp+1

is 1 and/or the slope of wq-1wq is -1 (Figure 2.21).

wp

wq

vk+1

(a)

wp

wq

vk+1

(b)

Figure 2.21: (a) The new vertex vk+1 is adjacent to all of wp, . . . , wq. If we place
vk+1 at µ(wp, wq), then some edges may overlap, in case that wp+1 lies
on the line of slope 1 through wp or wq-1 lies on the line of slope -1
through wq; (b) shifting wp+1, . . . , wq-1 by one and wq, . . . , wt by two
units to the right solves the problem.

In order to resolve these problems we shift some points around so that after the shift
wp+1 does not lie on the line of slope 1 through wp and wq-1 does not lie on the line of
slope -1 through wq. The process of inserting vk+1 then looks as follows.

1. Shift
Sq-1

i=p+1 L(wi) to the right by one unit.

2. Shift
St

i=q L(wi) to the right by two units.

3. P(vk+1) := µ(wp, wq).

4. L(vk+1) := {vk+1} [
Sq-1

i=p+1 L(wi).

Observe that the Manhattan distance between wp and wq remains even because the shift
increases their x-difference by two and leaves the y-coordinates unchanged. Therefore
by Proposition 2.51 the vertex vk+1 is embedded on the integer grid.

The slopes of the edges wpwp+1 and wq-1wq (might be just a single edge, in case
that p+1 = q) become < 1 in absolute value, whereas the slopes of all other edges along
the outer cycle remain ±1. As all edges from vk+1 to wp+1, . . . , wq-1 have slope > 1 in
absolute value, and the edges vk+1wp and vk+1wq have slope ±1, each edge vk+1wi, for
i 2 {p, . . . , q} intersects the outer cycle in exactly one point, which is wi. In other words,
adding all edges from vk+1 to its neighbors in Gk as straight-line segments results in a
plane drawing.
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Next we argue that the invariants (i)–(iii) are maintained. For (i) note that we start
shifting with wp+1 only so that even in case that v1 is a neighbor of vk+1, it is never
shifted. On the other hand, v2 is always shifted by two because we shift every vertex
starting from (and including) wq. Clearly both the shifts and the insertion of vk+1

maintain the strict order along the outer cycle, and so (ii) continues to hold. Finally,
regarding (iii) note that the edges wpwp+1 and wq-1wq (possibly this is just a single
edge) are the only edges on the outer cycle whose slope is changed by the shift. But these
edges do not appear on C�(Gk+1) anymore. The two edges vk+1wp and vk+1wq incident
to the new vertex vk+1 that appear on C�(Gk+1) have slope 1 and -1, respectively. So
all of (i)–(iii) are invariants of the algorithm, indeed.

So far we have argued about the shift with respect to vertices on the outer cycle of
Gk only. To complete the proof of Theorem 2.42 it remains to show that the drawing
remains plane under shifts also in its interior part.

Lemma 2.52. Let Gk, k > 3, be straight-line grid embedded as described, C�(Gk) =
(w1, . . . , wt), and let �1 6 . . . 6 �t be nonnegative integers. If for each i, we shift
L(wi) by �i to the right, then the resulting straight-line drawing is plane.

Proof. Induction on k. For G3 this is obvious. Let vk = w`, for some 1 < ` < t.
Construct a delta sequence � for Gk-1 as follows. If vk has only two neighbors in Gk,
then C�(Gk-1) = (w1, . . . , w`-1, w`+1, . . . , wt) and we set � = �1, . . . , �`-1, �`+1, . . . , �t.
Otherwise, C�(Gk-1) = (w1, . . . , w`-1 = u1, . . . , um = w`+1, . . . , wt), where u1, . . . , um

are the m > 3 neighbors of vk in Gk. In this case we set

� = �1, . . . , �`-1, �`, . . . , �`| {z }
m-2 times

, �`+1, . . . , �t .

Clearly, � is monotonely increasing and by the inductive assumption a correspondingly
shifted drawing of Gk-1 is plane. When adding vk and its incident edges back, the
drawing remains plane: All vertices u2, . . . , um-1 (possibly none) move rigidly with (by
exactly the same amount as) vk by construction. Stretching the edges of the chain
w`-1, w`, w`+1 by moving w`-1 to the left and/or w`+1 to the right cannot create any
crossings.

Linear time. The challenge in implementing the shift algorithm efficiently lies in the
eponymous shift operations, which modify the x-coordinates of potentially many ver-
tices. In fact, it is not hard to see that a naive implementation—which keeps track
of all coordinates explicitly—may use quadratic time. De Fraysseix et al. described an
implementation of the shift algorithm that uses O(n logn) time. Then Chrobak and
Payne [11] observed how to improve the runtime to linear, using the following ideas.

Recall that P(vk+1) = (xk+1, yk+1), where

xk+1 =
1

2
(xp - yp + xq + yq) and

yk+1 =
1

2
(-xp + yp + xq + yq) =

1

2
((xq - xp) + yp + yq) . (2.53)
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Thus,

xk+1 - xp =
1

2
((xq - xp) + yq - yp) . (2.54)

In other words, we need the y-coordinates of wp and wq together with the relative x-
position (offset) of wp and wq only to determine the y-coordinate of vk+1 and its offset
to wp.

Maintain the outer cycle as a rooted binary tree T , with root v1. For each node v of
T , the left child is the first vertex covered by insertion of v (if any), that is, wp+1 in
the terminology from above (if p+ 1 6= q), whereas the right child of v is the next node
along the outer cycle (if any; either along the current outer cycle or along the one at the
point where both points were covered together). See Figure 2.22 for an example.

(a)

vk+1

(b)

Figure 2.22: Maintaining a binary tree representation to keep track of the x-
coordinates when inserting a new vertex vk+1. Red (dashed) arrows
point to left children, blue (solid) arrows point to right children.

At each node v of T we also store its x-offset dx(v) with respect to the parent node.
For the root v1 of the tree set dx(v1) = 0. In this way, a whole subtree (and, thus, a
whole set L(·)) can be shifted by changing a single offset entry at its root.

Initially, dx(v1) = 0, dx(v2) = dx(v3) = 1, y(v1) = y(v2) = 0, y(v3) = 1, left(v1) =
left(v2) = left(v3) = 0, right(v1) = v3, right(v2) = 0, and right(v3) = v2.

Inserting a vertex vk+1 works as follows. As before, let w1, . . . , wt denote the vertices
on the outer cycle C�(Gk) and wp, . . . , wq be the neighbors of vk+1.

1. Increment dx(wp+1) and dx(wq) by one. (This implements the shift.)

2. Compute �pq =
Pq

i=p+1 dx(wi). (This is the total offset between wp and wq.)

3. Set dx(vk+1) 1
2
(�pq+y(wq)-y(wp)) and y(vk+1) 1

2
(�pq+y(wq)+y(wp)).

(This is exactly what we derived in (2.53) and (2.54).)

4. Set right(wp) vk+1 and right(vk+1) wq. (Update the current outer cycle.)
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5. If p+ 1 = q, then set left(vk+1) 0;
else set left(vk+1) wp+1 and right(wq-1) 0.
(Update L(vk+1), the part that is covered by insertion of vk+1.)

6. Set dx(wq) �pq - dx(vk+1);
if p+ 1 6= q, then set dx(wp+1) dx(wp+1)- dx(vk+1).
(Update the offsets according to the changes in the previous two steps.)

Observe that the only step that possibly cannot be executed in constant time is Step 2.
To analyze Step 2, note that all vertices but the last vertex wq for which we sum the
offsets are covered by the insertion of vk+1. As every vertex can be covered at most once,
the overall complexity of this step during the algorithm is linear. Therefore, this first
phase of the algorithm can be completed in linear time.

In a second phase, the final x-coordinates can be computed from the offsets by a
single recursive pre-order traversal of the tree. The (pseudo–)code given below is to be
called with the root vertex v1 and an offset of zero. Clearly this yields a linear time
algorithm overall.

compute_coordinate(Vertex v, Offset d) {

if (v == 0) return;

x(v) = dx(v) + d;

compute_coordinate(left(v), x(v));

compute_coordinate(right(v), x(v));

}

2.5.3 Remarks and Open Problems

From a geometric complexity point of view, Theorem 2.42 provides very good news
for planar graphs in a similar way that the Euler Formula does from a combinatorial
complexity point of view. Euler’s Formula tells us that we can obtain a combinatorial
representation (for instance, as a DCEL) of any plane graph using O(n) space, where n
is the number of vertices.

Now the shift algorithm tells us that for any planar graph we can even find a geometric
plane (straight-line) representation using O(n) space. In addition to the combinatorial
information, we only have to store 2n numbers from the range {0, 1, . . . , 2n- 4}.

When we make such claims regarding space complexity we implicitly assume the so-
called word RAM model. In this model each address in memory contains a word of b
bits, which means that it can be used to represent any integer from {0, . . . , 2b - 1}. One
also assumes that b is sufficiently large, for instance, in our case b > logn.

There are also different models such as the bit complexity model, where one is charged
for every bit used to store information. In our case that would already incur an additional
factor of logn for the combinatorial representation: for instance, for each halfedge we
store its endpoint, which is an index from {1, . . . , n}.
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Edge lengths. Theorem 2.42 shows that planar graphs admit a plane straight-line drawing
where all vertices have integer coordinates. It is an open problem whether a similar
statement can be made for edge lengths.

Problem 2.55 (Harborth’s Conjecture [17]). Every planar graph admits a plane straight-
line drawing where all Euclidean edge lengths are integral.

Without the planarity restriction such a drawing is possible because for every n 2 N
one can find a set of n points in the plane, not all collinear, such that their distances are
all integral. In fact, such a set of points can be constructed to lie on a circle of integral
radius [2]. When mapping the vertices of Kn onto such a point set, all edge lengths are
integral. In the same paper it is also shown that there exists no infinite set of points
in the plane so that all distances are integral, unless all of these points are collinear.
Unfortunately, collinear point sets are not very useful for drawing graphs. The existence
of a dense subset of the plane where all distances are rational would resolve Harborth’s
Conjecture. However, it is not known whether such a set exists, and in fact the suspected
answer is “no”.

Problem 2.56 (Erdős–Ulam Conjecture [12]). There is no dense set of points in the plane
whose Euclidean distances are all rational.

Generalizing the Fáry-Wagner Theorem. As discussed above, not every planar graph on n
vertices admits a plane straight-line embedding on every set of n points. But Theo-
rem 2.39 states that for every planar graph G on n vertices there exists a set P of n
points in the plane so that G admits a plane straight-line embedding on P (that is, so
that the vertices of G are mapped bijectively to the points in P). It is an open problem
whether this statement can be generalized to hold for several graphs, in the following
sense.

Problem 2.57. What is the largest number k 2 N for which the following statement
holds? For every collection of k planar graphs G1, . . . , Gk on n vertices each, there exists
a set P of n points so that Gi admits a plane straight-line embedding on P, for every
i 2 {1, . . . , k}.

By Theorem 2.39 we know that the statement holds for k = 1. Already for k = 2
it is not known whether the statement holds. However, it is known that k is finite [8].
Specifically, there exists a collection of 49 planar graphs on 11 vertices each so that for
every set P of 11 points in the plane at least one of these graphs does not admit a plane
straight-line embedding on P [29]. Therefore we have k 6 49.

Questions

1. What is an embedding? What is a planar/plane graph? Give the definitions
and explain the difference between planar and plane.
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2. How many edges can a planar graph have? What is the average vertex degree
in a planar graph? Explain Euler’s formula and derive your answers from it.

3. How can plane graphs be represented on a computer? Explain the DCEL data
structure and how to work with it.

4. How can a given plane graph be (topologically) triangulated efficiently? Ex-
plain what it is, including the difference between topological and geometric trian-
gulation. Give a linear time algorithm, for instance, as in Theorem 2.31.

5. What is a combinatorial embedding? When are two combinatorial embeddings
equivalent? Which graphs have a unique combinatorial plane embedding? Give
the definitions, explain and prove Whitney’s Theorem.

6. What is a canonical ordering and which graphs admit such an ordering? For
a given graph, how can one find a canonical ordering efficiently? Give the
definition. State and prove Theorem 2.44.

7. Which graphs admit a plane embedding using straight line edges? Can one
bound the size of the coordinates in such a representation? State and prove
Theorem 2.42.
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