
Chapter 1

Libwindow - a small
X11-library

This is a short and probably incomplete description of Libwindow, a small library
which aims to present an easy C++ interface to the X11 window system. If you want
to use the library in your program, do not forget the following include directive.

#include <IFM/window>

1.1 The Window Class (ifm::Wstream)

Definition

The class ifm::Wstream represents a window that can be used for IO-operations
and an associated graphic context. The graphic context defines the drawing color
(default: black), line width (default: 1) and drawing mode (default: GXcopy) and
affects any output operation. There are a number of member functions to change
the state of the graphic context. With the window comes a Cartesian coordinate
system where the origin sits in the lower left corner, i.e., the window resides in
the all-positive quadrant. All output is internally buffered, so in order to make it
visible on the display, this buffer has to be flushed. Many functions handle expose-
events, that means if parts of the window get obscured, their content is redrawn
automatically, as soon as they get visible (exposed) again.

Creation

ifm::Wstream w(string str = ”ifm ::Wstream”);

Creates a window with dimensions (512 x 512) and name str and
positions it with upper left corner (100, 100) on the X display
(your screen).

1

2 CHAPTER 1. LIBWINDOW - A SMALL X11-LIBRARY

ifm::Wstream w(int xsize, int ysize, string str = ”ifm ::Wstream”);

Precondition: 10 ≤ xsize, ysize ≤ 2048.
Creates a window with dimensions (xsize x ysize) and name
str and positions it with upper left corner (100, 100) on the X
display (your screen).

ifm::Wstream w(int xpos, int ypos, int xsize, int ysize, string str);

Precondition: 10 ≤ xsize, ysize ≤ 2048.
Creates a window with dimensions (xsize x ysize) and name str
and positions it with upper left corner (xpos , ypos) on the X
display (your screen).

ifm::Wstream w(ifm::Wstream);

copy constructor.

ifm::Wstream&

w = ifm::Wstream

copy assignment.

Operations

int w.xmin() returns minimal x-xoordinate in w .
int w.xmax() returns maximal x-xoordinate in w .
int w.ymin() returns minimal y-xoordinate in w .
int w.ymax() returns maximal y-xoordinate in w .
ifm::Wstream&

& w << ifm::Drawable d

d is drawn into w .

ifm::Wstream&

& w >> ifm::Getable d

d is set from w .

ifm::Wstream&

w.flush() Buffer is flushed and all output drawn onto the
display. Returns w .

ifm::Wstream&

w.endl() same as flush.
ifm::Wstream&

w.sync() Buffer is flushed, all output is drawn onto the
display and all pending X-requests have been pro-
cessed. Returns w .

1.1. THE WINDOW CLASS (IFM::WSTREAM) 3

ifm::Wstream&

w.clear() Clears the window and flushes the buffer. Re-
turns w .

ifm::Wstream&

w.wait(unsigned long microsec)

Flushes buffer and waits for microsec microsec-
onds.

bool w.check key()

Returns true, iff there is a KeyRelease event
pending.

bool w.check mouse()

Returns true, iff there is a MouseMotion event
pending.

bool w.check mouse click()

Returns true, iff there is a ButtonRelease event
pending.

int w.get key() Flushes buffer, waits for a KeyRelease event and
returns the pressed key’s ASCII-code. (65 ⇔ A,
97 ⇔ a). Expose events during the waiting period
are handled.

void w.get mouse(int& x, int& y)

Flushes buffer, waits for a MouseMotion event
and sets (x, y) to the mouse position. Expose
events during the waiting period are handled.

int w.get mouse click(int& x, int& y)

Flushes buffer, waits for a ButtonRelease event,
sets (x, y) to the mouse position and returns the
number of the pressed mouse button. (1 ⇔ left,
2 ⇔ middle, 3 ⇔ right). Expose events during
the waiting period are handled.

void w.wait for mouse click(int button = 0)

Precondition: 0 ≤ button ≤ 3.
Flushes buffer and waits until specified (0 ⇔ any)
mouse button gets released. Expose events during
the waiting period are handled.

ifm::Wstream&

w.set draw mode(int m)

Drawing mode is set to m. (Possible values in-
clude GXcopy , GXxor , GXand ,) Returns w .

4 CHAPTER 1. LIBWINDOW - A SMALL X11-LIBRARY

ifm::Wstream&

w.set line width(int w)

Precondition: w > 0.
Drawing line width is set to w . Returns w .

int w.number of colors()

Returns the number of available colors.

ifm::Wstream&

w.set color(int c)

Precondition: 0 ≤ c ≤ number of colors().
Drawing color is set to c. The last two colors are
always black and white, i.e., set color(number
of colors()) selects black . The rest is evenly di-
vided by interpolating the following colors in or-
der: red , orange, yellow , green, blue, magenta
and purple. Returns w .

Example

The following code reads in a Circle c, draws c and its bounding square and then
tracks the mouse pointer by drawing line segments between consecutive positions
until finally a mouse button is pressed.

#include <IFM/window>

int main()

{

// define a 200 x 200 pixel window

ifm::Wstream w(200, 200, "LibWindow-Example");

// read in a circle

ifm::Circle c;

w >> c;

// print c and its bounding square

w << ifm::yellow << c << ifm::red

<< ifm::Rectangle(c.x() - c.r(), c.y() - c.r(),

c.x() + c.r(), c.y() + c.r())

<< ifm::flush;

// tracks mouse pointer

ifm::Point p_last(c.x(), c.y());

do {

int x, y;

w.get_mouse(x, y);

w << ifm::blue << ifm::Line(p_last.x(), p_last.y(), x, y)

<< ifm::flush;

1.2. A DEFAULT WINDOW 5

p_last = ifm::Point(x, y);

} while (!w.check_mouse_click());

return 0;

}

1.2 A default Window

ifm::Wstream ifm::wio;

ifm::wio can be used whenever one default ifm::Wstream suffices. It is a so called
proxy, i.e., the corresponding X-window and graphic context are created, when
ifm::wio is used the first time. Consequently, if ifm::wio is not used anywhere, this
creation does not happen and hence no window appears.

1.3 What can be drawn (ifm::Drawable)

Here is a list of classes/objects that can be drawn into an ifm::Wstream using the
operator <<.

1.3.1 Points (ifm::Point)

ifm::Point p(int x, int y);

Creates a point with Cartesian coordinates (x , y).

int p.x() Returns x-coordinate of p.
int p.y() Returns y-coordinate of p.

Example

The following code draws a point at coordinate (100, 100) and waits for a mouseclick
to finish.

#include <IFM/window>

int main()

{

ifm::wio << ifm::Point(100, 100) << ifm::flush;

ifm::wio.wait_for_mouse_click();

return 0;

}

6 CHAPTER 1. LIBWINDOW - A SMALL X11-LIBRARY

1.3.2 Line Segments (ifm::Line)

ifm::Line l(int x1, int y1, int x2, int y2);

Creates a line from (x1 , y1) to (x2 , y2).

int l .x1() Returns x-coordinate of the first endpoint.
int l .y1() Returns y-coordinate of the first endpoint.
int l .x2() Returns x-coordinate of the second endpoint.
int l .y2() Returns y-coordinate of the second endpoint.

Example

The following code draws a line segment from (100, 100) to (200, 200) and waits
for a mouseclick to finish.

#include <IFM/window>

int main()

{

ifm::wio << ifm::Line(100, 100, 200, 200) << ifm::flush;

ifm::wio.wait_for_mouse_click();

return 0;

}

Notes

Line Segments are somewhat special in X, since they do not include their endpoints,
but only the grid points in between. So if you write

ifm::wio << ifm::Line(100, 100, 200, 100)

<< ifm::Line(201, 100, 300, 100)

<< ifm::flush;

there does not appear a continuous line segment (100, 100) −→ (300, 100), it will
have a one-pixel gap in the middle.

1.3.3 Rectangles (ifm::Rectangle)

ifm::Rectangle r(int x1, int y1, int x2, int y2);

Creates a rectangle with diagonal (x1 , y1) −→ (x2 , y2).

int r .x1() Returns x-coordinate of the diagonal’s first end-
point.

int r .y1() Returns y-coordinate of the diagonal’s first end-
point.

1.3. WHAT CAN BE DRAWN (IFM::DRAWABLE) 7

int r .x2() Returns x-coordinate of the diagonal’s second
endpoint.

int r .y2() Returns y-coordinate of the diagonal’s second
endpoint.

Example

The following code draws a rectangle with lower left corner (100, 100) and upper
right corner (200, 200) and waits for a mouseclick to finish.

#include <IFM/window>

int main()

{

ifm::wio << ifm::Rectangle(100, 100, 200, 200) << ifm::flush;

ifm::wio.wait_for_mouse_click();

return 0;

}

1.3.4 Filled Rectangles (ifm::FilledRectangle)

ifm::FilledRectangle r(int x1, int y1, int x2, int y2);

Creates a filled rectangle with diagonal (x1 , y1) −→ (x2 , y2).

int r .x1() Returns x-coordinate of the diagonal’s first end-
point.

int r .y1() Returns y-coordinate of the diagonal’s first end-
point.

int r .x2() Returns x-coordinate of the diagonal’s second
endpoint.

int r .y2() Returns y-coordinate of the diagonal’s second
endpoint.

Example

The following code draws a filled rectangle with lower left corner (100, 100) and
upper right corner (200, 200) and waits for a mouseclick to finish.

#include <IFM/window>

int main()

{

ifm::wio << ifm::FilledRectangle(100, 100, 200, 200)

<< ifm::flush;

ifm::wio.wait_for_mouse_click();

return 0;

}

8 CHAPTER 1. LIBWINDOW - A SMALL X11-LIBRARY

1.3.5 Circles (ifm::Circle)

ifm::Circle c(int x, int y, int r);

Creates a circle with center (x , y) and radius r .

int c.x() Returns center’s x-coordinate.
int c.y() Returns center’s y-coordinate.
int c.r() Returns radius of c.

Example

The following code draws a circle with center (100, 100) and radius 20. Then it
waits for a mouseclick to finish.

#include <IFM/window>

int main()

{

ifm::wio << ifm::Circle(100, 100, 20) << ifm::flush;

ifm::wio.wait_for_mouse_click();

return 0;

}

1.3.6 Filled Circles (ifm::FilledCircle)

ifm::FilledCircle c(int x, int y, int r);

Creates a filled circle with center (x , y) and radius r .

int c.x() Returns center’s x-coordinate.
int c.y() Returns center’s y-coordinate.
int c.r() Returns radius of c.

Example

The following code draws a filled circle with center (100, 100) and radius 20. Then
it waits for a mouseclick to finish.

#include <IFM/window>

int main()

{

ifm::wio << ifm::FilledCircle(100, 100, 20) << ifm::flush;

ifm::wio.wait_for_mouse_click();

return 0;

}

1.3. WHAT CAN BE DRAWN (IFM::DRAWABLE) 9

1.3.7 Ellipses (ifm::Ellipse)

ifm::Ellipse e(int x, int y, int w, int h);

Creates an ellipse with center (x , y), width 2 · w and height 2
· h.

int e.x() Returns center’s x-coordinate.
int e.y() Returns center’s y-coordinate.
int e.w() Returns half the width of e.
int e.h() Returns half the height of e.

Example

The following code draws an ellipse with center (100, 100), width 80 and height 50.
Then it waits for a mouseclick to finish.

#include <IFM/window>

int main()

{

ifm::wio << ifm::Ellipse(100, 100, 80, 50) << ifm::flush;

ifm::wio.wait_for_mouse_click();

return 0;

}

1.3.8 Filled Ellipses (ifm::FilledEllipse)

ifm::FilledEllipse e(int x, int y, int w, int h);

Creates a filled ellipse with center (x , y), width 2 · w and height
2 · h.

int e.x() Returns center’s x-coordinate.
int e.y() Returns center’s y-coordinate.
int e.w() Returns half the width of e.
int e.h() Returns half the height of e.

Example

The following code draws a filled ellipse with center (100, 100), width 80 and height
50. Then it waits for a mouseclick to finish.

#include <IFM/window>

int main()

{

ifm::wio << ifm::FilledEllipse(100, 100, 80, 50) << ifm::flush;

ifm::wio.wait_for_mouse_click();

return 0;

}

10 CHAPTER 1. LIBWINDOW - A SMALL X11-LIBRARY

1.3.9 Manipulators

The manipulators listed here correspond to the respective member functions of
ifm::Wstream.
The functionality can be looked up there.

ifm::Wstream& ifm::Wstream& w << ifm::flush
ifm::Wstream& ifm::Wstream& w << ifm::endl
ifm::Wstream& ifm::Wstream& w << ifm::sync
ifm::Wstream& ifm::Wstream& w << ifm::clear
ifm::Wstream& ifm::Wstream& w << ifm::wait(unsigned long)
ifm::Wstream& ifm::Wstream& w << ifm::line width(int)
ifm::Wstream& ifm::Wstream& w << ifm::draw mode(int)
ifm::Wstream& ifm::Wstream& w << ifm::color(int)

Shortcuts for Drawing Modes

ifm::Wstream& ifm::Wstream& w << ifm::copy mode
ifm::Wstream& ifm::Wstream& w << ifm::xor mode mode
ifm::Wstream& ifm::Wstream& w << ifm::or mode
ifm::Wstream& ifm::Wstream& w << ifm::and mode

Shortcuts for Colors

ifm::Wstream& ifm::Wstream& w << ifm::white
ifm::Wstream& ifm::Wstream& w << ifm::black
ifm::Wstream& ifm::Wstream& w << ifm::red
ifm::Wstream& ifm::Wstream& w << ifm::orange
ifm::Wstream& ifm::Wstream& w << ifm::yellow
ifm::Wstream& ifm::Wstream& w << ifm::green
ifm::Wstream& ifm::Wstream& w << ifm::lightgreen
ifm::Wstream& ifm::Wstream& w << ifm::blue
ifm::Wstream& ifm::Wstream& w << ifm::magenta
ifm::Wstream& ifm::Wstream& w << ifm::purple

1.4 What can be read (ifm::Getable)

Here is a list of classes/objects that can be read from an ifm::Wstream using the
operator >>.

ifm::Point , ifm::Line, ifm::Rectangle, ifm::FilledRectangle, ifm::Circle, ifm::Ellipse,
ifm::FilledCircle, and ifm::FilledEllipse.

Chapter 2

Libturtle - Turtle Graphics

This is a short description of Libturtle, a small turtle graphic library based on
Libwindow. If you want to use the library in your program, do not forget the
following include directive.

#include <IFM/turtle>

Imagine a turtle walking on the Euclidean plane and leaving a trace behind it. At
any time, the turtle has a certain position and a view direction. Initially, it is looking
to the right. You can influence these parameters using the following functions.

void ifm::forward(unsigned int i = 1)

Move the turtle i steps in view direction.

void ifm::left(int d = 1)

Turn the turtle left by an angle of d degree.

void ifm::right(int d = 1)

Turn the turtle right by an angle of d degree.

When the drawing is complete, i.e., at the end of the program, it is shown in a
window of 512 × 512 pixels, appropriately scaled to use the space available. A
mouseclick then destroys the window and ends the program.

Example

The following code draws a regular pentagon. Then it waits for a mouseclick to
finish.

#include <IFM/turtle>

int main()

11

12 CHAPTER 2. LIBTURTLE - TURTLE GRAPHICS

{

for (unsigned int i = 0; i < 5; ++i) {

ifm::forward();

ifm::left(72);

}

return 0;

}

