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Vorwort

Dieser erste Entwurf eines Vorlesungsskripts ist im Wintersemester 2004/2005 entstanden. Das
Skript erg änzt zwei in diesem Semester an verschiedenen Departementen der ETH Z ürich gele-
sene und vom Konzept her identische Vorlesungen. Das Skript wurde von den beiden Dozen-
ten Bernd G ärtner und Joachim Giesen gemeinsam mit Michael Hoffmann geschrieben, der
entscheidend an der Konzeption der Vorlesung beteiligt war. Wir haben uns entschieden, das
Skript in englischer Sprache anzufertigen, weil uns dies nat ürlicher erscheint und auch eine
bessere Wiederverwendbarkeit von Teilen des Skripts erm öglicht.

Das Konzept zur Vorlesung ist neu und befindet sich deshalb noch in der Testphase. Das
Skript reflektiert bereits einige Ergebnisse dieser Testphase. So haben wir uns zum Beispiel
entschieden, in Zukunft einige Anpassungen des Stoffs vorzunehmen. Material, auf das in
Zukunft verzichtet werden soll (Sortieren, regul äre Ausdr ücke) ist nicht im Skript abgedeckt.
An einigen Stellen weicht auch die Reihenfolge der Themen von der Reihenfolge in der Vor-
lesung ab. Trotz des gemeinsamen Konzepts unterscheiden sich die beiden Vorlesungen an
einigen Stellen, insbesondere in den Beispielen. Als Studierende werden Sie in diesem Skript
deshalb sowohl Beispiele aus ’Ihrer’ Vorlesung als auch welche aus der ’anderen’ Vorlesung
wiederfinden.

Urspr ünglich war der Plan, dieses Skript erst zum n ächsten Wintersemester und mit den
vollen Erfahrungen aus diesem Semester zu schreiben. Wir haben allerdings fr üh realisiert,
dass die Vorlesung ohne ein Skript nicht sehr gut dokumentiert ist, da es kein einzelnes Buch
gibt, das den Stoff in ähnlichem Masse abdeckt. Wir haben uns deshalb entschieden, bere-
its semesterbegleitend am Skript zu arbeiten, so dass Sie zum Ende des Semesters eine erste
Version in der Hand halten.

Wir m öchten aber klar sagen, dass es sich hierbei um eine ‘Beta-Version’ handelt, die in
vielen Bereichen noch Defizite und Inkonsistenzen aufweisen wird. Selbstverst ändlich haben
wir versucht, darauf zu achten, dass der Stoff korrekt wiedergegeben ist, garantieren k önnen
wir das bei der knappen Zeit, die uns zur Verf ügung stand aber nicht. Wir hoffen, dass das
Skript f ür Ihre Pr üfungsvorbereitung n ützlich ist, sehen Sie es aber bitte nur als Erg änzung zum
’offiziellen’ Vorlesungsstoff, der das Material auf der Webseite sowie die Tafelaufzeichnungen
umfasst.

Z ürich, 4. Februar 2005

Bernd G ärtner
Joachim Giesen
Michael Hoffmann
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Chapter 1

Foundations

1.1 A first C++ Program

Let us begin with a small program which already demonstrates several aspects of C++ pro-
gramming.

Program: add.C

// Program: add.C
// adds two input numbers of type int.

#include <iostream>

int main()
{

int a; // 1. addend
int b; // 2. addend

// Input
std::cout << "Input for the first addend : ";
std::cin >> a;
std::cout << "Input for the second addend: ";
std::cin >> b;

// Computation and output
std::cout << "The sum of " << a

<< " and " << b << " is "
<< a+b << "." << std::endl;

return 0;
}
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If you compile this program on your computer and then run the executable file produced by
the compiler you find the following line on the standard output, which typically is a window
on your computer screen.

Input for first addend :

You can now enter an integer, e.g., 7, on the standard input which is usually the keyboard.
After pressing ENTER the output on your screen should read as follows.

Input for first addend : 7
Input for second addend:

If you now enter a second integer, e.g., 5, and press ENTER afterwards, the output should
read.

Input for first addend : 7
Input for second addend: 5
The sum of 7 and 5 is 12.

Thus the program asked for two numbers as input and outputs (as we would expect from a
program called add.C) the sum of these two numbers.

Let us have a closer look at the different parts of the program and the role they play in
providing the functionality we observed above.

1.1.1 Comments

The first two lines of the program

// Programm: add.C
// adds two input numbers of type int.

are comments. They do not provide any functionality. That is, the program would function
exactly the same without these two lines. Nevertheless, comments are very important. Keep in
mind that on the one hand we write programs for the compiler to transform them into executable
programs that serve some functionality, but on the other hand we also write the programs for
other people to read, e.g., in order to modify, correct or extend the program. Without comments
it becomes in general a tedious if not to say impossible task for other people (or even oneself
after a couple of weeks) to read and understand the program. Comments start with two slashes
// and continue until the end of the line.
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1.1.2 The include directive

More important to the functionality of the program is the line

#include <iostream>

In this line we state that we want to use the in- and output facilities as they are implemented
in the standard library. In C++, many important facilities are part of the standard library rather
than of the core language. Whenever we want to use such a facility we use the include
directive to state that we want to use a corresponding library. The name of the library is always
enclosed in the angle brackets (< and >). The iostream library is part of the standard library
and supports sequential in- and output. From the iostream library we use the the input
stream std::cin and the operator >> to read values for the variables a and b from the
standard input, and we use the output stream std::cout and the operator << to write to the
standard output. E.g., with the line

std::cout << "Input for first addend : ";

we send the string (finite sequence of characters enclosed in double quotes ") to standard
output. To avoid confusion, notice that the letters std before the double colon :: (scope
operator) do not indicate that we refer to the standard output, but that the output stream cout is
defined in the name space std. For now that means that cout is defined in the standard library.
The same of course holds for std::cin. The last entity that we use from the iostream
library is the stream manipulator std::endl that causes (besides other things) a line break
in the output.

1.1.3 The main function

The next interesting and also very important line of our program is

int main()

In this line we declare (and define, i.e., give its implementation) the main function of our
program. Every C++ program must contain a main function. It gets called when the program is
executed. The main function must return an integer as its result. This is indicated by the three
letters int before the letters main. The integer can be used by the calling instance, i.e., the
operating system of our computer, to decide if the program has run successfully or not. The
convention is that a zero value indicates success whereas any other value indicates failure. That
is why we have as the second last line of the program the line

return 0;

If the program control reaches this line then everything was processed as planned and we
can report success to the calling instance, i.e., we can return the integer value zero. It is also
possible for the calling instance to pass parameters to the main function. These parameters are
listed in between the brackets ( and ) after the letters main. Here, this parameter list is empty
which means that our main function does not take any parameters from the calling instance.
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1.1.4 Blocks

The body, i.e., the whole program logic that encodes the functionality, of the main function is
enclosed in curly brackets. Everything enclosed in curly brackets is considered in C++ as one
unit called a block, i.e., an opening curly bracket { and the next subsequent (when reading the
program top down) closing curly bracket } define a block of our program.

1.1.5 Types and variables

The remaining lines that we have not described so far deal with the integer variables a and b.
A variable is a part of the computer’s memory that has a name and a value. In the lines

int a; // 1. addend
int b; // 2. addend

we define two variables of type int. The first variable has the name a and the second has
the name b. The definition of a variable is also a declaration. Valid names in C++ are all finite
sequences of symbols that can be composed of letters and digits and the underscore symbol. A
name must always begin with a letter.1 Upper and lower case letters are distinguished. Certain
names reserved by C++ are not allowed as names, e.g., ”main” or ”int”.

Inside the block where the name of the variable is defined we can always refer to the asso-
ciated memory (that gets reserved in the definition) by the name of the variable. Outside this
block the name is not visible and we can not use the name to refer to the associated memory.
From the type information the compiler deduces how much memory to allocate for the variable
and how to interpret the sequence of bits (zeros and ones) that is stored in the allocated mem-
ory. Variables of type int are intended to store integer values. We will later see how much
memory gets allocated for a variable of type int and how an integer stored in allocated mem-
ory is encoded by a sequence of bits. To summarize, a variable has a name, type, associated
memory and value. The value of the variable can be derived from memories content and the
type information.

Usually types come with associated operations defined on objects of this type. One opera-
tion defined on int variables is the binary operator + that we use in the lines

std::cout << "The sum of " << a
<< " and " << b << " is "
<< a+b << "." << std::endl;

to add the integers stored associated with variables named a and b, or shorter to add the
variables a and b.

1or an underscore

8



1.1.6 Scope and name lookup

Every block (piece of code enclosed by curly brackets) defines its own (local) scope. Names
(like variable names) declared in this scope are only visible in this scope and all its sub-scopes.
That is, they are local to this scope and consequently often referred to as local variables. Have
a look at the following code fragment (this is not a complete program, which can be compiled).

// global scope
{ // local scope

int a; // only a is visible in this scope
{ // another local scope
int b; // a and b are visible in this scope

}
}

To find the declaration associated to a name the compiler first looks in the scope where
the name appears. In its scope, a name is visible from its point of declaration in a top-down
manner, but not before. If it does not find a declaration in this scope it continues its search in the
next enclosing super-scope. This continues until a scope is found that contains an appropriate
declaration or the topmost scope, the global scope, is reached. This process is called name
lookup. The following code fragment exemplifies the name lookup.

{
int a = 7;
int b = a;
{

std::cout << a << std::endl; // output is 7
int a = 5;
std::cout << a << std::endl; // output is 5
std::cout << b << std::endl; // output is 7

}
std::cout << a << std::endl; // output is 7

}

One says that the second definition of the int variable a in the sub-scope hides the first
definition of the variable a.

In this code fragment we have also used initialization. In the lines

int a = 7;
int b = a;

we are not only defining the int variables a and b, but we are also initializing them (a
with the value seven and b with the value of a) using the binary assignment operator =.
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1.1.7 Statements

It remains to discuss one small but important detail that we have not described so far. Actually
this detail is only a letter, namely, the letter ;. This letter is always the last letter of a statement,
e.g., the declaration of a variable (declaration statement). A lone ; is also a statement, namely,
the null statement, which has no effect. We also consider a block (of statements) as a statement,
i.e., a sequence of statements enclosed in curly brackets. A block is also referred to as a
compound statement.

1.2 Control flow

We have not said so but the implicit assumption when discussing our first program add.C was
that the lines of the program are processed one after the other top-down. This is the linear (top-
down) control flow. To write more complex programs we have to deviate from the top-down
control flow at times. These deviations are controlled by so called (flow) control statements.

Motivated by the following episode our second program should test if a given positive
integer is a prime number or not, i.e., if it has more then two divisors.

In 1644 the monk Mersenne conjectured that all numbers of the form 2n − 1 are prime
numbers for

n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257,

and are not prime numbers for the remaining 1 < n < 257. It took more than 200 years to show
that Mersenne was wrong. Frank Cole showed in 1903 that 267 − 1 is not a prime number. We
want to confirm Cole’s result by devising the following program that reads an integer n from
standard input and tests for all integers between 2 and n − 1 if they divide n. If one of these
numbers divides n then n cannot be a prime number. That is, we need a means to enumerate
all potential divisors, although we do not know the number to be tested at compile time, i.e.,
at the time when we compile the program. Even if we would know the number to be tested
at compile time, a program with linear control flow needs at least one line of code for every
potential divisor to be tested. Such a program to confirm Cole’s result would have at least 267

lines of code most of which are highly repetitive. Thus it is wise to deviate at times from the
linear control flow.

Our program for primality testing reads as follows.

Program: prime.C

// Program: prime.C
// Test if a given integer is a prime number.

#include <iostream>

int main ()
{

// Input

10



int n; // integer to be tested
std::cout << "Integer larger than one? ";
std::cin >> n;

// Test
int d = 1; // potential divisor
do {
++d;

} while (n%d != 0);

// Output
if (d == n)
std::cout << n << " is a prime number." << std::endl;

else
std::cout << n << " is not a prime number and " << d

<< " is the smallest non-trivial divisor of "
<< n << "." << std::endl;

return 0;
}

1.2.1 The do while loop

The first control statement used in prime.C is the do while loop.

do {
++d;

} while (n%d != 0);

The statements (here we have only the single statement ++d) in the block enclosed by do
and while are executed as long as the condition in the parentheses after the letters while,
i.e., in our case n%d != 0 is fulfilled. That is, as long as the expression n%d is different
from zero the int variable d gets increased by one. More specifically, the unary operator ++
increases the value of an int variable by one. The binary operator != tests if the value of its
left and right argument are not the same. Finally, the binary operator % is the modulo operator
on the type int, i.e., it gives the rest of the integer division of its left argument (in our case n)
by its right argument (here d). Hence these three lines of code say, increase d in steps of one
as long as the division of n by d has a non-zero remainder, i.e., as long as d does not divide n.

The general form of a do while loop is as follows,

do {
statement_1

...
statement_n

} while (condition);
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1.2.2 The if else statement

The second control statement used in prime.C is the if else statement,

if (d == n)
std::cout << n << " is a prime number." << std::endl;

else
std::cout << n << " is not a prime number and " << d

<< " is the smallest prime divisor of " << n
<< "." << std::endl;

The purpose of the if else structure is the conditional execution of statements. In our
example that means under the condition that the values of the variables d and n coincide, the
statement

std::cout << n << " is prime number." << std::endl;

is executed. Otherwise, i.e., in the case that d and n have different values, the statement

std::cout << n << " is not a prime number and " << d
<< " is the smallest non-trivial divisor of " << n
<< "." << std::endl;

will be executed. Notice that the binary operator == tests if the value of its left and right
argument are the same. In this sense it is dual to the operator !=. Be careful not to confuse the
assignment operator = with the operator ==.

The general form of an if else statement reads as follows,

if (condition)
statement_1

else
statement_2

Remember that statements can also be blocks of statements, i.e., a sequence of statements
enclosed in curly brackets.

1.2.3 The if statement

Sometimes the else part of the if else statement is not necessary. In such a case we can
use just the if part and omit the else part. That is, the general form of the if statement
reads (where the statement again can be a block),

if (condition)
statement
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In this form the if statement is equivalent to the following if else statement,

if (condition)
statement

else
;

Let us return to the program prime.C. Can we say that this program is correct, i.e., can we
trust its output? We can try to reason about the program. Let us collect what we know;

(1) Before the body of the do while loop of prime.C was entered for the first time we
have d == 1 and n >= 2 (assuming the user of the program followed the instruction
to enter an integer larger than one).

(2) Always after dwas incremented we have d > 1 and and d <= n and n == (n/d)*d
+ n%d. The second inequality must be valid since n is a divisor of itself. Thus if d has
the same value as n then the condition of the do while is no longer satisfied and d
is not incremented any further. The last equality is a property of the modulo operator
%, the binary multiplication operator * and the binary integer division operator / on the
type int that always holds for positive n and d. The value of the variable d has to be
positive, because it is positive before we enter the do while loop and gets only incre-
mented within the do while loop. Assuming the user followed the instructions also n
has to be positive.

(3) After the do while loop was left we have d > 1, since d got incremented at least
once, and d <= n (as in (2)) and n%d == 0, because we left the do while loop.

From this we can deduce that it is always valid that d >= 1 and d <= n and n ==
(n/d)*d + n%d. Thus these statements are invariant under processing the do while loop.
That is, why one refers to such statements as loop invariants. How does this help now to make
a statement about the correctness of prime.C? After the do while was left we know that d
has to be a divisor of n, because it holds that n%d == 0. Since it also holds d > 1 and d <=
n there are only two possibilities: either d == n and n is a prime number or d is a non-trivial
divisor of n and n cannot be a prime number. These two cases are handled accordingly by the
if else statement.

1.2.4 The while loop

The body of a do while loop is executed at least once before the condition of the loop
gets evaluated. In the alternative while loop this is not the case. There the condition gets
evaluated before the body of the loop is executed which can have the result that the body never
gets executed. In an alternative implementation of the program prime.Cwe replace the actual
primality test by the following code fragment that uses a while loop.
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// Test
int d = 2; // potential divisor
while (n%d != 0)

++d;

Notice that this code fragment is equivalent to the original one with respect to functional
correctness, but it is not equivalent in terms of processed statements. Actually, we should have
used this form of the loop right from the beginning.

The general form of a while loop reads as follows.

while (condition)
statement

where the statement can also be a block.

1.2.5 The for loop

An alternative to the while loop as we have used it above is a for loop. The for loop is
typically used in case that one iterates over some domain and applies the same operation to all
elements in this domain. That is exactly what we do in our primality testing program. Thus we
can replace the test in the program prime.C by the following code fragment, which involves
a for loop,

// Test
int d; // potential divisor
for (d = 2; n%d != 0; ++d);

The general form of a for loop reads as follows.

for (init-statement condition; expression)
statement

The init-statement must be an expression statement. Remember that an expression state-
ment always ends with a semicolon. The init-statement is typically used to declare and initialize
the loop control variable(s). In our example the single loop control variable is d. We only ini-
tialize d in the init-statement, because if we would also define it there it would not be visible
outside the scope defined by the for loop, but we need d also outside the loop. The expression,
in our example ++d, is an expression statement without the semicolon at the end.

A while loop equivalent to the general for loop reads as follows,

{
init-statement
while (condition) {
statement
expression;

}
}
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The equivalent while loop makes apparent why we could not define the variable d in the
init-statement of the for loop. The init-statement and the while loop are contained in their
own scope, i.e., they are enclosed by curly brackets. The variable name d is not visible outside
this scope. Since we want to use it outside we also have to define it outside.

1.3 Integers

We have already seen several operations defined on the type int, which can be used to repre-
sent integers. Here we want to use some of these operators to convert a temperature given in
degrees Celsius into degrees Fahrenheit. The conversion is defined by the following formula,

Fahrenheit =
9 · Celsius

5
+ 32.

We use this formula in the following program.

Program: fahrenheit.C

// Program: fahrenheit.C
// converts temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{

// Input
std::cout << "Temperature in degrees Celsius (integer) ? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are approximately"

<< 9*celsius/5 + 32 << " degrees Fahrenheit."
<< std::endl;

return 0;
}

1.3.1 Associativities and precedences

Applying the rules of arithmetic it looks like we could replace the line

15



std::cout << celsius << " degrees Celsius are approximately"
<< 9*celsius/5 + 32 << " degrees Fahrenheit."
<< std::endl;

in the program fahrenheit.C by the following line.

std::cout << celsius << " degrees Celsius are approximately"
<< 9/5*celsius + 32 << " degrees Fahrenheit."
<< std::endl;

If we try out out both versions after compilation, we find that in the first version we get on
input 15 degrees Celsius the output

15 degrees Celsius are approximately 59 degrees Fahrenheit.

whereas the modified version outputs

15 degrees Celsius are approximately 47 degrees Fahrenheit.

That is, the first version is much more accurate (actually, it is accurate). The reason for
this behavior is twofold. Firstly, the binary division operator / on the type int implements
the integer division, i.e., the result is always an integer. The remainder of the division can be
obtained with the binary modulo operator %. It always holds a == a/b + a%b for int
variables a and b that have non-negative values. Secondly, the expressions 9*celsius/5 +
32 and 9/5*celsius + 32 get evaluated from left to right, since the C++ operators / and
* are left associative. Plugging in the value 15 for the variable celsius we get the following
evaluation sequence for the two expressions

9 * 15 / 5 + 32 −→ 135 / 5 + 32

−→ 27 + 32

−→ 59

and in the modified expression, respectively,

9 / 5 * 15 + 32 −→ 1 * 15 + 32

−→ 15 + 32

−→ 47.

In the second evaluation sequence one sees the effect of the integer division: 9/5 evaluates to
1. During the evaluation we have assumed (as we are used to when writing down arithmetic
expressions) that the operators * and / bind stronger than the operator +. This is true indeed.
The operators * and / have a higher precedence than the operator +, i.e., they bind stronger.
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Notice that associativities and precedences do not completely specify the evaluation or-
der of the operators in an arithmetic expression. For example the following two evaluation
sequences are both compatible with the precedences and associativities,

9 * 15 + 5 * 32 −→ 135 + 5 * 32

−→ 135 + 160

−→ 295

and

9 * 15 + 5 * 32 −→ 9 * 15 + 160

−→ 135 + 160

−→ 295.

Precedences can be overruled using parentheses as in the following expression,

9 * (15 + 5) * 32 −→ 9 * (20) * 32

−→ 9 * 20 * 32

−→ 180 * 32

−→ 5760.

In the following table we list all arithmetic operators on the the type int together with their
associativities and precedences.

meaning operator arity precedence associativity

sign + unary 15 right
sign - unary 15 right
increment ++ unary 15 right
decrement -- unary 15 right
addition + binary 12 left
subtraction - binary 12 left
multiplication * binary 13 left
division (integer) / binary 13 left
modulo % binary 13 left

The increment and decrement operators ++ and -- can be used in pre- and postfix notation.
The difference is illustrated in the following lines of code.

int a = 7;
std::cout << ++a << std::endl; // outputs 8
std::cout << a++ << std::endl; // outputs also 8
std::cout << a << std::endl; // outputs 9

The assignment operator = has precedence 2 and is right associative. The binary operators
+, -, * and / can be combined with the assignment operator =. They read then as +=, -=, *=
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and /=. The meaning of the combined operators is that their right operand gets applied to their
left operand, e.g., the following three statements are functionally equivalent,

i = i+1; and ++i; and i += 1;.

1.3.2 Value range

It would be unreasonable to assume that an int variable can have an arbitrary large or small
value. This value somehow has to be stored in the computers memory, which is finite. In fact
the value of the smallest and largest value an integer can assume depends on the computer, but
C++ allows to access these values using the library limits and the following expressions

std::numeric_limits<int>::min()

and

std::numeric_limits<int>::max()

Here max() and min() are functions in the scope std::numeric limits<int>.
Only that much is necessary to know at this point: min() and max() are not functions in a
nested namespace, but in a so called class scope of the class std::numeric limits<int>.
A program to output the values of the expressionsstd::numeric limits<int>::min()
and std::numeric limits<int>::min() reads as follows.

Program: limits.C

// Program: limits.C
// ouputs the minimum and maximum value
// a variable of type int can take.

#include <iostream>
#include <limits>

int main()
{

std::cout << "Minimum value for an int variable is : "
<< std::numeric_limits<unsigned int>::min()
<< std::endl

<< "Maximum value for an int variable is : "
<< std::numeric_limits<unsigned int>::max()

<< std::endl;

return 0;
}
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When we run the program limits.C on our machine (Pentium III processor) we get the
following result.

Minimum value for an int variable is : -2147483648
Maximum value for an int variable is : 2147483647

We have 2147483647 = 231 − 1. That is, in its current form our program prime.C is not
sufficient to verify Cole’s result on Mersenne’s conjecture, i.e., 267 − 1 is not a prime number.

1.3.3 The type unsigned int

A variable of type int can take also negative values. This is not really needed in our appli-
cation prime.C. Using a type that allows only non-negative values might allows to extend
the value range without using more of the computer’s memory. C++ provides such a type, it
is called unsigned int. We have all the arithmetic operators with the same precedences
and associativities on the type unsigned int as on the type int besides the the unary sign
operators. Obviously, the binary subtraction operator - cannot be well defined on the type
unsigned int, i.e., the result cannot always be represented as an unsigned integer. Some-
thing similar already holds for the type int since subtraction can under- and addition can
overflow the value range of the type int).

Plugging in the parameter unsigned int instead of int in the program limits.C
and adjusting the output appropriately gives on our machine the following value range,

Minimum value for an unsigned int variable is : 0
Maximum value for an unsigned int variable is : 4294967295

It holds that 4294967295 = 232 − 1 which is still not large enough to verify Cole’s result.

1.3.4 Literal integer constants

Literal integer constants of type int are for example 127 or 0. Literal integer constants of
type unsigned int are for example 127u or 0u. We will later see how the literal integer
constants can be defined more formally.

1.3.5 Type conversion

It is allowed to have arithmetic expressions in a C++ program that involve both variables/constants
of type int and of type unsigned int, e.g. 17+17u. In such expressions the arguments of
a binary operator that involves arguments of both types are converted to the more general type,
which is the type unsigned int. That is, the expression 17 + 17u evaluates as follows,

17 + 17u −→ 17u + 17u

−→ 39u.
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Notice that the conversion of a negative integer value is in general not well defined, but the C++
standard prescribes that the conversion gives the least unsigned int value in the same
congruence class modulo 232 as the source int value. We will see the motivation for this
prescription soon.

1.3.6 Binary representation of integers

The binary representation of a non-negative integer n are the coefficients in the following ex-
pansion,

n =

∞
∑

i=0

bi2
i,

where the coefficients bi are in {0, 1}. Assume that on our computer we can linearly store 32
of such coefficients for the value of a variable of type unsigned int (a not unreasonable
assumption on most of todays computers) then the value is stored as a sequence of 32 Bits. i.e.,
zeroes and ones, with the convention that the (32 − i)-th Bit is the coefficient of 2i - the Bits
are numbered from zero to 31. The largest value that we can store in this way is

31
∑

i=0

2i = 232 − 1 = 4294967295.

A way to store negative integer values using the same 32 Bits is as follows: Use the 32nd Bit
for the sign of the value. If the value is non-negative store zero in the 32nd Bit and the value in
the first 31 Bits. Thus the largest positive value that can be stored is

30
∑

i=0

2i = 231 − 1 = 2147483647.

To store negative values, take the Bit sequence that would correspond to the positive value, i.e.,
the value after multiplication with −1. Now invert all Bits in this sequence, i.e., a zero is turned
into a one and vice versa. Finally, add binarily the value 1 to this sequence. For example −7 is
represented as follows: The Bit representation of 7 is

00000000000000000000000000000111.

Inverting this Bit sequence gives

11111111111111111111111111111000.

Binary addition of
00000000000000000000000000000001

finally gives the representation

11111111111111111111111111111001
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for −7. This representation is called the two’s complement representation. Observe that if we
binarily add

00000000000000000000000000000111 and 11111111111111111111111111111001

we get
00000000000000000000000000000000,

the representation of 0, (and an overflowing Bit that we ignore). That is, what we expect as the
sum of 7 and −7. Hence in this representation signed integers can be easily added. Also notice
that smallest signed integer that we can represent with 32 Bits has the representation

10000000000000000000000000000000,

i.e., this value is −2147483648.
Using this representation we can now better understand what happens if a negative value n

gets converted in an expression that involves int and unsigned int variables/constants.
The Bit sequence is just interpreted as in the unsigned case. Thus the value after conversion
is std::numeric limits<unsigned int>::max()+n + 1 (here the additions are
meant in the mathematical sense and not as C++ operators). This value is the least unsigned
int value congruent to n modulo 232 (given that 32 bits are reserved for values of the types
int and unsigned int. Thus the prescription of the conversion of an int value to an
unsigned int value is such that in two’s complement representation of integers the bit
sequence stays the same when converting from int to unsigned int.

We conclude this section with a program to compute the inverse (the sequence of the Bits
is inverted) binary representation of an unsigned integer.

Program: binary.C

// Program: binary.C
// computes the inverse binary representation
// of an unsigned integer

#include <iostream>
#include <limits>

int main()
{

// Input
std::cout << "Unsigned integer (0 <= input <= "

<< std::numeric_limits<unsigned int>::max()
<< ")" << std::endl;

unsigned int n;
std::cin >> n;
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// Computation and output
std::cout << "The inverse binary representation of "

<< n << " is: ";
do {
std::cout << n%2; // last Bit
n /= 2; // remove the last Bit

} while (n != 0);
std::cout << "." << std::endl;
return 0;

}

1.4 Floating point numbers

When converting degrees Celsius into degrees Fahrenheit the result in general is fractional
even if the input is integral. Thus it would be convenient to have a type that allows to represent
rational or even real numbers. Since our computers memory is limited it would be unreasonable
to assume that any real (or rational) number can be represented. In fact, these numbers can only
be represented approximately. A first but crude approximation would be the rounding to the
nearest integer (or more specifically the nearest value that can be represented by a variable
of type int or unsigned int). The most often used approximation is by a floating point
number. C++ provides two types of floating numbers to approximate real numbers, namely,
the types float and double.

1.4.1 The floating point types float and double

The types float and double provide the same arithmetic operations as the type int, be-
sides the modulo operator. The precedences and associativities are exactly the same.

The type double is more general than the type float. That is, in a mixed expression a
variable/constant of type float gets converted into a double value. Since this conversion
is guaranteed to be safe, i.e., no information can get lost as in the case of the conversion from
int to unsigned int, this conversion is called a promotion.

The floating point point types are more general than the integral types, i.e., int and
unsigned int. Thus in mixed expressions the integral types get converted in involved
floating point types. Notice, a conversion always goes from the less general to the more gen-
eral type. But it is not guaranteed that no information gets lost in a conversion.

Examples of literal floating point constants of type double are 0.0 and .1 and 1. and
3.1415 and 1.23e-7. Here 1.23e-7 represents the value 1.23·10−7. Literal floating point
constants of type float are as literal double constants followed by the letter f , e.g., 0.0f,
3.1415f, .1f, 1.f, 3.1415f or 1.23e7f.

Our first program that involves the type double is very simple. It asks the user to input two
real numbers, i.e., literal double constants, a minuend and a subtrahend and their difference.
The program then checks if the difference is correct. It reads as follows,
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Program: subtract.C

// Program: subtract.C
// Checks the subtraction of to numbers

#include <iostream>

int main()
{

// Input
double minuend;
std::cout << "Minuend =? ";
std::cin >> minuend;

double subtrahend;
std::cout << "Subtrahend =? ";
std::cin >> subtrahend;

double result;
std::cout << minuend << " - " << subtrahend << " =? ";
std::cin >> result;

// Comparison and output
if (result == minuend - subtrahend)
std::cout << "Correct." << std::endl;

else
std::cout << "Wrong, by " << minuend - subtrahend - result

<< "!" << std::endl;
return 0;

}

Here is what happens if we test the program subtract.C.

Minuend =? 1.1
Subtrahend =? 1.0
1.1 - 1 =? 0.1
Wrong, by 8.32667e-17!

What has happened here? Obviously we have a precision problem. At a first glance it looks
like that we should have enough memory to represent the values 1.1, 1.0 and 0.1. A somewhat
deeper look reveals that this is not the case. The value x of a variables of type double is
stored as floating point number, which has the following representation,

x = (−1)sm2e,
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where s ∈ {±1} is the sign of x, e ∈ {emin, . . . , emax} ⊂ Z is an exponent and m is a mantissa,
which is of the form

m =

l
∑

i=1

bi2
−i,

with bi ∈ {0, 1} and l the length of the mantissa. Notice that the range of floating point numbers
that we can represent is determined by the three parameters emin, emax and l.

There is only hope that we can store the values 1.1, 1.0 and 0.1 in our computer’s mem-
ory if they have a finite floating point representation. In order to have a finite floating point
representation they need to have a finite binary expansion, i.e., in an expansion of the form

x =

∞
∑

i=−∞

bi2
i,

with bi ∈ {0, 1}, we have bi = 1 only for finitely many i’s. Using the division algorithm known
from primary school adapted to binary expansions one finds that the binary expansion of 1.1 =
11/10 is as follows bi = 0, for i > 0, b0 = 1, b−1 = b−2 = b−3 = 0 and b−4j = b−4j−1 = 1
and b−4j−2 = b−4j−3 = 0 for j ≥ 1. That is, 1.1 does not have a finite binary expansion and
thus does also not have a finite floating point representation. That explains to a certain extent
the behavior of the program subtract.C on input 1.1, 1.0 and 0.1.

1.4.2 IEEE Standard 754

This IEEE standard defines representations of floating point numbers. Note that the C++ float-
ing point types need not to follow this standard. There are single precision (32 bits) and double
precision (64 bits) floating point numbers. In most cases it is not wrong to assume that the type
float corresponds to the single precision representation and the type double corresponds to
the double precision representation. The memory layout for single precision is one bit for the
sign, eight bits for the exponent and 23 bits for the mantissa. The layout for double precision
is one bit for the sign, 11 bits for the exponent and 52 bits for the mantissa.

SIGN BIT. Zero denotes a positive number and one denotes a negative number.

EXPONENT. Signed integers are stored. The representation is as discussed for the type int,
besides that a bias is added to this representation. The bias for single precision is 127 and
1023 for double precision. The all-zero pattern in the exponent (in single precision this would
correspond to a value of -127) and the all-one pattern in the exponent (in single precision this
corresponds to a value of 128) are reserved to represent special floating point numbers. Thus
the value ranges {emin, . . . , emax} of the exponent are {−126, . . . , 127} for single precision and
{−1022, . . . , 1023} for double precision, respectively.

MANTISSA. The mantissa is stored in normalized form. That means that it is assumed that
the leading bit in the mantissa is one, i.e., the bit that denotes the coefficient before the binary
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point. This allows some optimization. Since we always assume that the leading bit is one we
do not have to store it explicitly. As a result, the mantissa has effectively 24 bits in the case of
single precision and 53 bits in the case of double precision.

SPECIAL AND DENORMALIZED VALUES. Zero is a special value, which is represented with
all zeroes for the exponent bits and all zeroes for the mantissa. Notice that 0 and −0 are distinct
values (though they compare as equal). If all bits in the exponent are zero then the value is a
denormalized number, which does not have an assumed leading one before the binary point.
Thus zero is a special form of a denormalized number. The values plus and minus infinity are
represented by an exponent whose bits are all one and a mantissa whose bits are all zero. The
sign bit distinguishes between plus and minus infinity. Finally, an exponent whose bits are all
one and a mantissa whose bits are not all zero denotes the value NaN (Not a Number).

1.4.3 Value ranges

We approximate real numbers in the following value ranges using either single or double pre-
cision floating point numbers.

denormalized normalized

single precision ±2−149 to ±(1 − 2−23)2−126 ±2−126 to ±(2 − 2−23)2127

double precision ±2−1074 to ±(1 − 2−52)2−1022 ±2−1022 to ±(2 − 2−52)21023

Thus in single precision we are not able to represent (correspondingly for double precision),

(1) negative numbers smaller than −(2 − 2−23)2127 (negative overflow),

(2) negative numbers larger than −2−149 (negative underflow),

(3) positive numbers larger than (2 − 2−23)2127 (positive underflow) and

(4) positive numbers smaller than 2−149 (positive overflow).

RELATIVE ERROR. Every real number x with |x| in the interval

2emin ≤ |x| ≤ (2 − 2−l)2emin

gets approximated by its nearest floating point number x̂ with a relative error of

|x − x̂|
|x| ≤ ε,

where ε = 2−l (remember that l is the number of bits of the exponent) is the so called machine
epsilon. The value of the machine epsilon can be obtained from the limits library (similar
as in our program limits.C), calling the function
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std::numeric_limits<float>::epsilon();

To get the machine epsilon for the type double one has to replace the template parameter
float by the parameter double.

To demonstrate the effect of floating point approximations we want to show a program that
computes the n-th harmonic number

Hn =
n

∑

i=1

1

i
=

n
∑

i=1

1

n + 1 − i

using the single precision type float in the two ways as given by the two sums.

Program: harmonic.C

// Program: harmonic.C
// computes the n-th harmonic number in two ways.

#include <iostream>

int main()
{

// Input
std::cout << "Which harmonic number H_n (1 <= n <= "

<< std::numeric_limits<unsigned int>::max()
<< ") ? ";

unsigned int n;
std::cin >> n;

// Forward sum
float sum1 = 0.0f;
for (unsigned int i = 1; i <= n; ++i)
sum1 += 1.0f / i;

// Backward sum
float sum2 = 0.0f;
for (unsigned int i = n; i >= 1; --i)
sum2 += 1.0f / i;

// Output
std::cout << "Forward sum = " << sum1 << "\n"

<< "Backward sum = " << sum2 << std::endl;
return 0;

}
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Before we discuss the results of this program let us have a look at the 1.0f / i as used
in the in harmonic.C. Here 1.0f is a float literal constant and i is a variable of type
unsigned int. Since float is the more general type than unsigned int, the value
stored in i is converted to float and then the division operator on the type float is applied.
The result of the division is again of type float. In the expression 1 / i the int literal
constant 1 would be converted to 1u and then the division operator on the type unsigned
int applied. The result would always be 0u besides in the cases when i stores the values zero
and one. Thus replacing the expression 1.0f / i by the expression 1 / i would change
the program harmonic.C dramatically.

Now let us have a look at an execution of the program harmonic.C,

Which harmonic number H_n (1 <= n <= 4294967295) ? 10000000
Forward sum = 15.4037
Backward sum = 16.686

The results differ significantly. The difference becomes even more apparent when we exe-
cute harmonic.C again with a larger input,

Which harmonic number H_n (1 <= n <= 4294967295) ? 100000000
Forward sum = 15.4037
Backward sum = 18.8079

Notice that the forward sum did not change, which cannot be correct. Using the approxi-
mation

1

2(n + 1)
< Hn − ln n − γ <

1

2n
,

where γ = 0.57721666 . . . is the Euler-Mascheroni constant, we get Hn ≈ 18.998. That is, the
backward sum gives us a reasonable approximation of the n-th harmonic number. The reason
why the backward sum behaves better than the forward sum is that the very small numbers that
are added in the end to the forward sum are no longer significant if the exponent is adapted to
the exponent of the sum that has already been computed, i.e., when adding the value of 1.0f
/ i to the value of sum1 the exponent of the value of 1.0f / i has to be increased in order
to match the exponent of the value sum1 and the mantissa of the value of 1.0f / i has to
be filled with leading zeroes. Soon there are more leading zeros than the number of bits in
the mantissa, which results in adding zero to the sum. Thus the sum remains constant once it
reached 15.4037, although limn→∞ Hn = ∞.

1.5 Boolean expressions

We have already seen two Boolean expressions in the program prime.C, both in conjunction
with control flow structures, i.e., the expression n%d != 0, where we have checked if d is
a divisor of n, and the expression d == n. In the following table we show some Boolean
operators that are defined on all arithmetic types, i.e., the integer and the floating point types,
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meaning operator arity precedence associativity

< relation < binary 10 left
<= relation <= binary 10 left
> relation > binary 10 left
>= relation >= binary 10 left
equality test == binary 9 left
inequality test != binary 9 left

1.5.1 The type bool

The operators that we have shown in the table above can be used to form atomic Boolean
expressions that are either true or false. C++ provides a type bool to represent the two Boolean
values true and false. The two literal bool constants are true and false. The integral
types int and unsigned int can be converted into the type bool, where the value zero is
interpreted as false and all other values are interpreted as true. The type bool can even
be promoted to the integral types, i.e., the C++ standard guarantees that no information gets
lost. In the following table we list the operators defined on the type bool; they correspond to
the logical and, or and negation operation.

meaning operator arity precedence associativity

negation ! unary 15 right
logical and && binary 5 left
logical or || binary 4 left

Let us see now an example how a Boolean expression gets evaluated,

5 * 7 <= 32 && 11 == 2 * 5 + 1 || 6 > 5

−→ 35 <= 32 && 11 == 2 * 5 + 1 || 6 > 5

−→ false && 11 == 2 * 5 + 1 || 6 > 5

−→ false || 6 > 5

−→ false || true

−→ true .

1.5.2 Short circuit evaluation

The evaluation above is surprising if we consider only precedences and priorities. The expres-
sion 35 <= 32 && 11 == 2 * 5 + 1 never gets evaluated. This is due to the fact that
in addition to precedences and priorities another rule applies to the evaluation of Boolean ex-
pressions, namely the so called short circuit evaluation. The short circuit evaluation rule says
the following: for a binary Boolean operator the left operand always gets evaluated first. If
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the value of the operator is determined already after evaluating its left operand then the right
operand does not get evaluated. That is, if the left hand side argument of the operator && evalu-
ates to false, as it is the case in our example, then the expression on the right hand side does
not get evaluated and the value of the whole expression is false. Correspondingly, if the left
hand side argument of the operator || evaluates to true then the expression on the right hand
side does not get evaluated and the value of the whole expression is true.

1.6 Strings

Besides numbers, text is among the most often automatically processed quantities. Thus it is
not surprising that C++ provides types to handle characters and text.

1.6.1 The type char

A variable of type char stores characters. Literal character constants are for example ’A’,
’a’, ’2’ or ’\n’. Here ’\n’ is a special character (control sequence) that causes a line
break. It might be surprising that char is also an arithmetic type. In arithmetic expressions
involving char values these values get promoted to the type int. For example on our system
both expressions ’2’ - ’0’ and ’2’ - 48 have the int value two.

Encoding of characters. Unlike for numbers there is no natural encoding of characters. The
encoding has to be defined in a table. One of the most popular table are the ASCII (Ameri-
can Standard Code for Information Interchange,) which uses seven bits for the encoding, or
extended ASCII code, which uses eight bits and represents more characters.

1.6.2 The type std::string

A string is a sequence of characters. C++ does not really provide a built in type for strings,
but we can find such a type in the standard library. To use this type we have to include the
string library using the directive #include <string>. String constants are sequences of
characters enclosed in quotation marks, e.g. "This is a string.". In order to use the
character ’"’ within a string we have to escape it using the escape sequence ’\"’. Thus the
statement

std::cout << "\"This is a string.\"" << std::cout << std::endl;

writes "This is a string." to the standard output. The type std::string comes
with the binary operator +, which has the same associativity and precedence as in arithmetic
expression. The + operator concatenates two strings, e.g., the following sequence of statements

std::string s = "This is ";
std::cout << s + "a string." << std::endl;
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results in printing This is a string. on the standard output device. The type
std::string also provides (member) functions that can be applied to variables of type
std::string. For example, the function length() returns the length of a string. The
sequence of statements

std::string s = "This is a string.";
std::cout << "The string \"" << s << "\" has length "

<< s.length() << "." << std::endl;

results in printing The string "This is a string." has length 17. on
the standard output device. We call a member function via an object of the string class by using
the binary dot operator . whose left argument is a variable name and whose right argument is
the name of the member function, e.g., s.length().

The type std::string provides even more, namely, its own types. The types

std::string::iterator and std::string::const iterator

can be used to define iterator variables, which can be used to iterate through a string and to
access the characters in a string.

1.6.3 String iterators

String iterators can be seen as pointers to the the characters in a string. Thus the string iterator
types are equipped with unary dereference operator *, which when applied to an iterator re-
turns the corresponding character. Furthermore iterators can be incremented and decremented,
i.e., preceding to the next character in the string and to the previous character, respectively.
Therefore, the string iterator types come with the unary increment operator ++ and the unary
decrement operator --. The latter operators both come in pre- and postfix form. Iterators can
also be compared using the binary comparison operators == and !=.

Let us have look at an example. On Apple operating systems the character ’\r’ causes
a line break whereas on Unix operating systems this is caused by the character ’\n’ (on
Microsoft’s operating systems the two characters \n\r are needed to cause this effect). The
program mac2unix.C converts text files from Mac (short for Apple Macintosh) format into
the Unix format.

Program: mac2unix.C

// Programm: max2unix.C
// converts Mac text files into Unix text files.

#include <iostream>
#include <string>
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int main()
{

// Input
std::string f;
std::getline(std::cin, f);

// Conversion
std::string::iterator b = f.begin();
std::string::iterator e = f.end();
for (; b != e; ++b)
if (*b == ’\r’) *b = ’\n’;

// Output
std::cout << f;
return 0;

}

Before we discuss the iterators used in the program mac2unix.C let us have a look at the
line

std::getline(std::cin, f);

In this line we use a function named getline, which is defined in the namespace std, to
read from the input stream std::cin, i.e., from the standard input (in general the keyboard)
into the string f. The string f is then modified in the following part of the program.

Every string object provides two iterators that can be accessed through the member
functions begin() and end(), respectively. That is, in the lines

std::string::iterator b = f.begin();
std::string::iterator e = f.end();

we define two variables of type std::string::iterator, one named b and the
named e, and initialize them with the value of f.begin() and f.end(), respectively. The
two iterators f.begin() and f.end() define an iterator range through which we can iterate
using the increment and decrement operators. The convention is that the iterator f.begin()
points to the first character in the string f, whereas the the f.end() points behind the last
character in the string, i.e., it cannot be dereferenced meaningfully. In this sense the iterator
range can be seen as an half open interval [f.begin(), f.end()). In the for loop

for (; b != e; ++b)
if (*b == ’\r’) *b = ’\n’;

we use the ++ operator in prefix form to iterate through the iterator range [f.begin(),
f.end()), i.e., through the string f. In the body of the loop we check if the character the
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iterator points to is ’\r’. To this end we use the dereference operator *, that we apply to the
iterator b. If the iterator b points to the character ’\r’ then we replace it with ’\n’.

Finally we output the modified string f by putting it on the output stream std::cout.
Notice that it is important in the program mac2unix.C that we can modify the value of

the character pointed to by the the iterator b. Sometimes we only want to read this value but
not modify it. In this case a std::string::const iterator should be used. The use
of such an iterator makes it possible for the compiler to ensure the the value the iterator points
to does not get modified. In this sense the use of std::string::const iterator is a
safety mechanism.

1.6.4 Type aliasing using typedef

Sometimes it is cumbersome to write type names like

std::string::const iterator.

C++ allows to define an alias for such a type name using the keyword typedef. For example
we can use it to write the following variant of the program mac2unix.C,

Program: mac2unix-2.C

// Programm: max2unix.C
// converts Mac text files into Unix text files.

#include <iostream>
#include <string>

typedef std::string::iterator It;

int main()
{

// Input
std::string f;
std::getline(std::cin, f);

// Conversion
It e = f.end();
for (It b = f.begin(); b != e; ++b)
if (*b == ’\r’) *b = ’\n’;

// Output
std::cout << f;
return 0;

}
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Note that that the variable b of type It, which is an alias for std::string::iterator,
is local to the scope of the for loop in this version of the program. %

1.7 Vectors

A string is a container for a sequence of characters. What about containers for variables of
other types? It is conceivable that we also want to store and manipulate sequences of numbers.
C++ provides such a container, which can be parameterized with a type. This container is a
vector, which is also provided by the standard library. To use vectors we have to include the
vector library using the directive #include <vector>.

In order to use a vector, e.g., in order to declare a variable of type vector, a template
parameter that specifies a sequence of what type the vector stores, has to be provided. For
example in the lines

std::vector<int> iv;
std::vector<double> dv;

we declare two vector variables, one of type std::vector<int> with the name iv
and the other of type std::vector<double> with the name dv. In the first case the
template parameter is int and in the second case it is double.

Vectors also provide their own iterator types, that can be used as the iterators for vectors.
Let us see an example now. The sieve of Eratosthenes is a method to compute all prime numbers
up to a given number n. The idea behind this algorithm is pretty simple: associate with every
integer from 2 to n a marker that can take the values ”true” and ”false”. In the beginning set
all markers to the value ”true”. Then go linearly through the numbers from 2 to n. Whenever
you find a number that is marked ”true”, mark all its multiples (besides the number itself) as
”false”. In the end only the prime numbers are marked ”true”.

Program: eratosthenes.C

// Program: eratosthenes.C
// calculates prime numbers using the sieve
// of Eratosthenes.

#include <iostream>
#include <vector>

typedef std::vector<bool> Vec;
typedef Vec::size_type ST;

int main()
{

// Input
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std::cout << "Compute prime numbers up to (at most "
<< std::numeric_limits<ST>::max() << ") ? ";

unsigned int n;
std::cin >> n;

// Computation and output
std::cout << "Prime numbers in [0," << n << "): ";
Vec is_prime(n, true);
for (ST i = 2; i < n; ++i)
// Invariant: For all j in [2,n):
// (1) j is prime => is_prime[j]
// (2) j % k == 0 for any k in [2,i) => !is_prime[j]
if (is_prime[i]) {

std::cout << i << " ";
// mark all multiples of i as not prime
for (ST m = 2*i; m < n; m += i)
is_prime[m] = false;

}
std::cout << std::endl;
return 0;

}

There are three things remarkable about the program eratosthenes.C.

(1) The type alias typedef Vec::size type ST;

(2) The declaration (and initialization) Vec is prime(n, true);

(3) The expression is prime[i] and the assignment is prime[m] = false.

The type alias is easy. The type Vec, alias for std::vector<bool>, provides a type
size type to which we want to refer also as ST. For example the type of the return value of
the member function size(), which gives the number of values in a vector, is size type.
It can very well be that size type is just an alias for the type unsigned int. At least
C++ guarantees us that ST behaves like an unsigned integral type, i.e., on ST we have the
same operators with the same meaning as on unsigned int, but the value range could be
different.

In the statement Vec is prime (n, true); an object of type Vec is declared and
initialized to store n values (of type bool) that are all true). This initialization is an example
of a constructor call for the type vector - here a constructor that takes two arguments the first
one of type ST and the second one of type bool, i.e., the template parameter we used. Types
provide constructors for initialization.

The expression is prime[i] calls the subscript operator [] provided by the type Vec
for the object is prime. The subscript operator can be applied to objects of type Vec and
takes an argument of type ST. The result of this operator is a reference to the (i − 1)-th bool
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value stored in the vector is prime. Notice that the indexing of a vector starts at zero. We
can use this reference to read and manipulate this value. Notice that the indexing of a vector
starts at zero. In the if statement if(is prime[i]) such a value is read, whereas it is
manipulated in the assignment is prime[m] = false, i.e., the (m − 1)th value stored in
is prime will be false now.

Another remarkable property of vectors they share with strings of type std::string)
is that they are dynamic, i.e., they do not have constant size and also the amount of computer
memory they occupy can change. A special way to grow a string is to append new values at
its end with the member function push back. Have a look at the following fragment of a
program.

typedef std::vector<int> Vec;
typedef Vec::const_iterator Cit;

Vec a(1,1);
Cit e = a.end();

std::cout << "Length of a is " << a.size()
<< " and the value of its last element is "
<< *--e << "." << std::endl;

a.push_back(2);
e = a.end();
std::cout << "Length of a is " << a.size()

<< " and the value of its last element is "
<< *--e << "." << std::endl;

a.push_back(3);
e = a.end();
std::cout << "Length of a is " << a.size()

<< " and the value of its last element is "
<< *--e << "." << std::endl;

leads to the output

Length of a is 1 and the value of its last element is 1.
Length of a is 2 and the value of its last element is 2.
Length of a is 3 and the value of its last element is 3.

Note that here we use a const iterator provided by the type std::vector<int>.
We refer to this iterator type using the alias Cit. In the statement Cit e = a.end(); we
define a variable of type Cit with name e and initialize it with a.end() (an iterator that
points behind the last value stored in the vector named a). The expression *--e evaluates as
follows: first the iterator e gets decremented. The return value of this prefix decrement opera-
tion is an iterator that points to the last value in the vector a. The returned iterator finally gets
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dereferenced by a call to the dereference operator *. The return value of the dereference opera-
tor is the value of the last element stored in a. The pre-increment and the dereference operator
are operators provided by the type const iterator. Why do we use a const iterator
here and not an iterator, which is also provided by the type std::vector<int>? The
reason is that we need only read access to the values pointed to by the iterator, i.e., we only
send these value to an output stream, and do not intend to modify them. That is, the following
would be rejected by the compiler,

typedef std::vector<int> Vec;
typedef Vec::const_iterator Cit;

Vec a(1,1);
Cit e = a.end();

*--e += 1;
std::cout << "Length of a is " << a.size()

<< " and the value of its last element plus one is "
<< *e << "." << std::endl;

gives when compiling it with the compiler g++-3.4.2,

error: assignment of read-only location

whereas it works fine if we change the iterator type used,

typedef std::vector<int> Vec;
typedef Vec::iterator It;

Vec a(1,1);
It e = a.end();

*--e += 1;
std::cout << "Length of a is " << a.size()

<< " and the value of its last element plus one is "
<< *e << "." << std::endl;
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Chapter 2

Functions

2.1 The program prime.C revisited

We have seen that we could use the program prime.C to test if a number is prime or composite
up to 231−1, the maximal value of type int representable on our computer. Even if we would
replace int by unsigned int we are not able to confirm Cole’s result that Mersenne’s
conjecture is wrong. But according to Mersenne’s conjecture, 231−1 is a prime number, which
we can confirm with our program. When we do this we realize that the test takes quite long (a
couple of minutes on our computer). A simple observation might help to speed up the program.
Divisors always come in pairs (besides for square numbers). From such a pair, it is enough to
test if the smaller of its elements divides the input number. Thus we only have to test potential
divisors up the the square root of the input number. But how do we get the square root of a
number? Here is a simple algorithm that approximates the square root quite well.

2.1.1 Newton’s method

Given some positive number n. We want to approximate the square root of n, i.e., a null of
the the function f(x) = x2 − n, which for n 6= 0 has two nulls (a positive and a negative one,
both with the same absolute value). The idea is to compute a sequence x1, x2, . . . of numbers
that converges to one of the nulls. To this end, fix a start value x1 6= 0 and approximate f(x)
by a linear function, whose null we can compute. This null will be the next number x2 in our
sequence. The tangent to the graph (x, f(x)) at the point (x1, f(x1)) is a linear function

t(z) = zf ′(z) + c.

Plugging in z = x1 gives
t(x1) = f(x1) = x1f

′(x1) + c.

Resolving for c gives c = f(x1) − x1f
′(x1). Hence

t(z) = zf ′(x1) + f(x1) − x1f
′(x1) = (z − x1)f

′(x1) + f(x1).
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The next number x2 in our sequence is the null of the function t, i.e., t(x2) = 0 from which we
get

(x2 − x1)f
′(z) + f(x1) = 0 and thus x2 = − f(x1)

f ′(x1)
+ x1.

Plugging this into f(x) = x2 − n and f ′(x) = 2x gives

x2 =
1

2

(

x1 +
n

x1

)

,

or in general

xi+1 =
1

2

(

xi +
n

xi

)

.

If x1 is a positive number larger than the null then the sequence x1, x2, . . . converges from the
right towards

√
n. Here is program that approximates

√
n by computing such a sequence.

Program: newton.C

// Program: newton.C
// Newton approximation of square root

#include <iostream>
#include <limits>
#include <cassert>

int main()
{

// Input
std::cout << "Square root of n > 0 ? ";
double n;
std::cin >> n;

// Newton iteration: x_{i+1} = 1/2 (x_i + n/x_i) We start with
// x_1:=(n+1)/2, because (n+1)/2-sqrt(n) = (n-2sqrt(n)+1)/2 =
// (sqrt(n)-1)ˆ2/2 > 0 for x_1 > sqrt(n).
//
// In theory the sequence x_1, x_2, ... is monotonly decreasing.
// Here we have to be careful, since the double mantissa is finite.

double curr = (n + 1.0) / 2.0; // start value
double prev; // prev value

const double roundoff =
curr * std::numeric_limits<double>::epsilon();
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do {
prev = curr;
assert(curr > 0);
curr = (curr + n / curr) / 2.0;

} while (prev - curr > roundoff);

std::cout << "The square root of " << n
<< " is approximately " << curr "." << std::endl;

return 0;
}

The value std::numeric limits<double>::epsilon() is the machine epsilon
for the type double that we pass here as a template argument. We use the machine epsilon
to check if we still make progress toward the real solution in machine resolution. Note that
this is an application of the formula for the relative approximation error of a real number by
a floating point number. The double variable named roundoff is qualified as constant
using the keyword const. That means that the value of the variable roundoff cannot be
changed in the subsequent program. Any attempt to change its value would be rejected by the
compiler. Variables that are qualified const must be initialized when they are defined. Notice
also the use of the macro assert from the library <cassert>. The macro tests a condition,
here curr > 0. If this tests fails a message is printed on an output device and the program
terminates. The rest of the program should be pretty much straightforward by now. But how
does this program help us to achieve our goal to speed up the program prime.C? One way to
do so is to copy code from newton.C into prime.C. This gives the following program.

Program: fast prime1.C

// Program: prime.C
// Test if a given integer is a prime number.

#include <iostream>
#include <limits>
#include <cassert>

int main ()
{

// Input
int n; // integer to be tested
std::cout << "Integer larger than one? ";
std::cin >> n;
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// Test
// Compute upper bound for potential divisors first.
double curr = (n + 1.0) / 2.0; // start value
double prev; // prev value

const double roundoff =
curr * std::numeric_limits<double>::epsilon();

do {
prev = curr;
assert(curr > 0);
curr = (curr + n / curr) / 2.0;

} while (prev - curr > roundoff);

// Actual primality test
curr += 1.0; // upper bound for potential divisors
int d = 2; // potential divisor
while (d <= curr && n%d != 0)
++d;

// Output
if (d > curr || d >= n)
std::cout << n << " is a prime number." << std::endl;

else
std::cout << n << " is not a prime number and " << d

<< " is the smallest non-trivial divisor of "
<< n << "." << std::endl;

return 0;
}

Let us first comment on a couple of things before we say what we do not like about the
solution fast prime1.C. Firstly, this program involves arithmetic expressions that involve
values of type int and double. Remember that in these expressions the int values get
converted into double values. This applies to the expressions

(n + 1.0) / 2.0 and (curr + n / curr) / 2.0.

The same holds for the mixed Boolean expressions d <= curr and d > curr. Secondly,
we had not only to change the condition that controls the while loop, but also the condition
in the if statement that controls the output. The only purpose of the condition d >= n left
from the logical operator || is to take care of the case that n == 2.
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2.1.2 Encapsulating functionality

What we do not like about the program fast prime1.C is that the computation of the upper
bound for potential divisors takes much more space in the code than the actual testing. Fur-
thermore, it is conceivable that we need to approximate the square root of some number also
in other programs. We do not want to copy the code of newton.C always, as we have done
it here, in such cases. The best thing would be if the compiler could do the copying for us.
Actually, this is possible if we write a function to approximate a square root, which could be
copied by the compiler. A first step in this direction is the following.

Program: fast prime2.C

// Program: prime.C
// Test if a given integer is a prime number.

#include <iostream>
#include <limits>
#include <cassert>

double sqrt(double x);
// PRE: x >= 0.
// POST: retun value is an approximation of the square
// root of x.

int main ()
{

// Input
int n; // integer to be tested
std::cout << "Integer larger than one? ";
std::cin >> n;

// Test
int bound = static_cast<int>(sqrt(n)) + 1;
int d = 2; // potential divisor
while (d <= bound && n%d != 0)
++d;

// Output
if (d > bound || d >= n)
std::cout << n << " is a prime number." << std::endl;

else
std::cout << n << " is not a prime number and " << d

<< " is the smallest non-trivial divisor of "
<< n << "." << std::endl;
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return 0;
}

double sqrt(double x)
{

// PRE: x >= 0.
// POST: retun value is an approximation of the square
// root of x.
assert(x >= 0);
if (x == 0) return 0;

double curr = (x + 1.0) / 2.0; // start value
double prev; // prev value
const double roundoff =
curr * std::numeric_limits<double>::epsilon();

do {
prev = curr;
assert(curr > 0);
curr = (curr + x / curr) / 2.0;

} while (prev - curr > roundoff);

return curr;
}

In the global scope we declare a function double sqrt(double x) that has a param-
eter of type double and returns some value also of type double. The name of the function
is sqrt.

2.1.3 Pre- and post-conditions

The comments

// PRE: x >= 0.
// POST: retun value is an approximation of the square
// root of x.

are an informal contract for the function sqrt. If the pre-condition x >= 0 is fulfilled
then the function guarantees the post-condition, which is this case is, that the return value is
an approximation of the square root of the value of the parameter named x. A pre-condition
usually is a restriction on the value range of the parameters of the function. Notice that the
compiler has no means to check whether the function complies with its contract or not.

42



2.1.4 Declaration and definition

After declaration the name of the function is known below in the global scope and its sub-
scopes. We use the function sqrt in the initialization of an int variable named bound. Note
that the function is not defined yet, i.e., we have not provided a definition, i.e., implementation,
before we use the function sqrt in the initialization of a variable named bound in the main
function. That is, the implementation can be deferred. For variables (as we use them here)
declaration (announcing the name and the type of the variable) and the definition (reserving
memory) are one and the same. As we will see soon it often makes sense to separate declaration
and definition of functions. We could have had defined the function sqrt at the place where
we declared it. In this case the function need not be declared in a separate statement, i.e., we
could have just moved the definition up. In this case declaration and definition are again one
and the same. The definition of the function sqrt defines its own local scope. The name of the
parameter x is only visible in this scope and so are the names curr, prev and roundoff.

2.1.5 Function call

Let us have now a closer look at the initialization of the variable bound.

int bound = static_cast<int>(sqrt(n)) + 1;

The static cast<int> only converts the value of the expression sqrt(n) explicitly
from type double to type int. The expression sqrt(n) is a call to the function sqrt.
When the function sqrt is called an actual parameter, here the value of the variable n, is
passed to the function. The value of the actual parameter is copied into the formal parameter,
here variable x. Note that the value of the actual parameter in our example is of type int
whereas the value of the formal parameter is of type double. This causes no problem, because
before copying the value of the actual parameter can be converted to the type of the formal
parameter if this is possible, i.e., if a conversion exists. With the function call the program
control goes to function, whose statements are processed according to the usual rules for control
flow. With the return statement the control is passed back to the calling instance. Note that
the lifespan of variables local to the function is limited to the time when the function body
is processed. That is, the function sqrt return the value of the variable curr, but not the
associated memory. In order to reuse this value it has to be assigned to variable in the scope the
function was called from. That is exactly what we do in the main function when we initialize
the variable bound.

2.1.6 Compilation units

As we said, it is very likely that we need a function to approximate the square root of a number
also in other programs. So far we have not reached the goal to reuse our implementation of
the function sqrt. What we need to do is to implement the function in a different file and
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then include this file into our program that is exactly what the #include directive does. For
example we declare the function sqrt in a file sqrt.h and then include the declaration in
our program file fast prime.C using one of the directives

#include "sqrt.h" or #include <sqrt.h>.

The difference between the two directives is only for the compiler where to look out for a
file named sqrt.h. In the form #include "sqrt.h" the compiler looks in the directory
from where it is called, whereas in the form #include <sqrt.h> the compiler needs to be
given a list of directories where to look for include files. As we said in order to use the name of
the function sqrt it is enough that it was declared before it is called. We ensure this with the
include directive, which just copies the declaration from the file sqrt.h into the file that
contains the include directive. See the following example.

Program: fast prime3.C

// Program: prime.C
// Test if a given integer is a prime number.

#include <iostream>
#include "sqrt.h"

int main ()
{

// Input
int n; // integer to be tested
std::cout << "Integer larger than one? ";
std::cin >> n;

// Test
int bound = static_cast<int>(sqrt(n)) + 1;
int d = 2; // potential divisor
while (d <= bound && n%d != 0)
++d;

// Output
if (d > bound || d >= n)
std::cout << n << " is a prime number." << std::endl;

else
std::cout << n << " is not a prime number and " << d

<< " is the smallest non-trivial divisor of "
<< n << "." << std::endl;

return 0;
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}

The actual implementation of the function sqrt is then in a corresponding file sqrt.C.
Since this file does not contain a main function it cannot be compiled into an executable pro-
gram but only into an object file that can be linked to an executable file. Therefore the compiler
calls another program called the linker. One object file can be linked to many executable files.

2.1.7 Namespaces

What happens if we include also a file math.h into the file fast prime3.C that declares
amongst other mathematical functions a function double sqrt(double x);? We are in
trouble then, because the name sqrt cannot be linked unambiguously with one definition of
the square root function. A way to prevent such name clashes is to use namespaces. Names-
paces are named scopes and when used, names should be qualified with the name of the scope
by using the scope operator ::. The file sqrt.h would then look as follows

Library: sqrt.h

// Library: sqrt.h
// provides function declaration for a function to
// approximate the square root of a double value.

namespace inf {
double sqrt(double x);
// PRE: x >= 0.
// POST: retun value is an approximation of the
// square root of x.

} // namespace inf

and we would have to replace the line in which the function sqrt is called in the program
fast prime3.C as follows

int bound = inf::sqrt(n) + 1;

2.1.8 Qualified name lookup

Here inf::sqrt is a qualified name. If the function name sqrt would not be qualified then
the name look up would work as for variable names, i.e., the compiler first looks in the scope
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where the function name appears, e.g., where the function is called. If it does not find a dec-
laration in this scope it continues its search in the next enclosing super-scope. This continues
until a scope is found that contains an appropriate declaration or the top most scope, the global
scope, is reached. This process is called unqualified name lookup. As we have seen names
can be qualified using the binary scope operator ::. The left hand side argument of the scope
operator :: must be either the name of a namespace or the name of a class. Its right hand side
argument can be any name, e.g., the name of namespace, function or variable. The binary scope
operator is left associative and has precedence 17. In the qualified name lookup, the name on
the left hand side of the scope operator is looked up unqualified, as described above, and then
the name on its right hand side is looked up in the scope (named scope, i.e., namespace, or
class scope) given as the left hand side argument. It is only looked up in top-down manner in
the latter scope but not in its sub-scopes.

2.2 Call by reference and void functions

Functions as we seen them so far basically act as ”mathematical functions” in the sense that
they map the values of the function parameters to the return value. Sometimes it is desirable to
have more powerful functions which could be used to do something like the following.

int x = 7;
int y = 8;
inf::swap(x, y);
std::cout << "Value of x = " << x

<< " and value of y = " << y
<< "." << std::endl;

should produce the following output.

Value of x = 8 and value of y = 7.

That is, the the function swap swaps the values of the variables x and y. But that seems
to be impossible if the the function swap only works with copies of the values of x and y.
Another thing is remarkable about our use of the function swap. If it has a return value then
we do not make use of it. Actually, to serve its purpose namely to swap the values of the
variables a and b the function swap need not have a return value at all. It is possible in C++ to
write a function that provides exactly the functionality of swap as we have used it above and
nothing more.

Library: swap.h

namespace inf{
void swap(int& a, int& b)
// POST: the values of a and b have been swapped

46



{
int c = a;
a = b; b = c;

} // swap
} // namespace inf

2.2.1 The type void

The function swap as implemented above has no return value. This is indicated in the decla-
ration

void swap(int& a, int& b);

of the function swap. Here the type of the return value is void, which is another built-in
type whose use is very restricted. Note that we do not explicitly return a value of type void,
there are no such values. Equivalently, we could have added as the last statement in the body
of the function swap

return;

which indicates that program control is given back to the calling instance, but no value is
returned to this instance.

2.2.2 Reference types

If the function swap does not a return a value then its functionality must be implicit or as one
says, it is a side effect. Note that the parameters of the function swap are of type int&. The
type int& is a reference type. A variable of reference type just serves as another name for
an already defined variable, i.e., the name of the reference variable is an alias for an already
defined variable. When used as function parameters that means that the names of the formal
parameters of the function that are of reference type serve as an alias for the actual parameters.
In our swap example the variable name a is an alias for the variable x and the name a is an
alias for the variable y. The function swap can now access and modify the values associated
with x and y by addressing them under the names a and b, respectively. That is how the
function swap can swap the values of its actual parameters. One says that the function swap
calls its parameters by reference opposed to the ordinary ”call by value”, where the values of
the actual parameters get copied into the formal parameters and thus only the values of the
actual parameters get passed to the function. Just to avoid confusion a function can have both
reference and value parameters and it can also have both, a return value and side effects.

Any type (besides void) has a corresponding reference type. Syntactically a type and its
reference type are distinguished by the symbol & used for reference types. Reference types
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cannot only be used as function parameters though that is where they make the most sense.
They can be used as ordinary variables to serve as a variable name alias, but some care has to
be taken. The following points are important when dealing with types.

(1) A variable of reference type must be initialized. Since the only purpose of such a variable
is to serve as an alias for another variable its sole name (as in a declaration without
initialization) is meaningless.

(2) On reference types we have the same operations as on the corresponding (ordinary) type.
But the effect of these operations can affect the value of the variable aliased by the
reference variable as the following example shows.

double a = 1.0;
double &b = a;
b += 1.0; // The value of a is now 2.0
double c = 3.0;
b = c; // The value of a is now 3.0

2.3 Recursion

In our final implementation of the program fast primes.C we have called the function
inf::sqrt from the function main. This is an example where a function calls another func-
tion. A function can call also itself, either directly or indirectly via other function calls. Such a
function is called a recursive function.

Many mathematical functions have a quite natural recursive definition. We will see two
examples in this section. Firstly, the greatest common divisor of two natural numbers and
secondly, the Fibonacci numbers.

2.3.1 Greatest common divisor

The function
gcd : N × N → N

gives the greatest common divisor of its two arguments and has the following remarkable prop-
erty.

Lemma 1 gcd(a, b) = gcd(b, a%b) if b > 0.

PROOF. Let d = gcd(a, b) and c = gcd(b, a%b). Our goal is to show that c and d are mutual
divisors of each other. But then it must hold d = c.

Let us first show that d divides c. It holds a%d = b%d = 0, because by definition d is a
divisor of both a and b. It also holds for the remainder a%b of the integer division a/b,

a%b = a − (a/b) ∗ b.
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This implies

(a%b)%d = (a − (a/b) ∗ b)%d

= a%d − ((a/b) ∗ b)%d

= 0 − 0 = 0.

Thus d is a divisor of both b and a%b. But then it must also be a divisor of the greatest common
divisor of b and a%b. Thus d divides c.

Now let us show that c divides d. It holds b%c = (a%b)%c = 0, because by definition c is
a divisor of both b and a%b. It also holds

a = a%b + (a/b) ∗ b.

This is, actually, the same formula for the remainder a%b that we have used above only resolved
for a. We get

a%c = (a%b + (a/b) ∗ b)%c

= (a%b)%c + ((a/b) ∗ b)%c

= 0 + ((a/b) ∗ b)%c

= 0 + 0 = 0,

where ((a/b) ∗ b)%c = 0 follows from b%c = 0. Thus c is a divisor of both b and a. But then
it must also be a divisor of the greatest common divisor of b and a. Thus c divides d. �

If we stick to the convention gcd(b, 0) = gcd(0, b) = 0 then the lemma suggests the fol-
lowing recursive function to compute the greatest common divisor of two unsigned int
values. This function is an implementation for the type unsigned int of Euclid’s algo-
rithm to compute the greatest common divisor of two natural numbers.

Library: gcd.h

namespace inf{
unsigned int gcd(unsigned int a, unsigned int b)
// POST: return value is the greatest common divisor
// of a and b, where gcd(n,0):=gcd(0,n):=n.
{

if (b == 0) return a;
return gcd(b, a % b);

} // gcd
} // namespace inf

A natural question to ask is whether there can be an infinite sequence of function calls to
gcd triggered by one call to it, i.e., the question is whether the algorithm that is encoded in the
function gcd always terminates. For Euclid’s algorithm, termination is easy to see. The termi-
nation condition is b == 0 since in this case there is no recursive call to gcd. In the recursive
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calls to the function gcd, the second argument always gets smaller and decreases by at last
one. Furthermore the argument cannot get smaller then zero. This proves that there can only
be finitely many recursive calls to the function gcd and thus Euclid’s algorithm terminates.

Note that the termination condition is crucial. Every recursive function needs such a con-
dition to prevent an infinite recursion. Let us now turn to another example.

2.3.2 Fibonacci numbers

Fibonacci numbers are a sequence of natural numbers that are recursively defined as follows:

F0 = 0, F1 = 1, Fi = Fi−1 + Fi−2, i ≥ 2.

This recursive definition can immediately be translated into a C++ function.

Library: fibonacci.h

namespace inf{
unsigned int fib(unsigned int n)
// POST: return value is the n’th Fibonacci number F_n,
// where F_0:=0, F_1:=1 und F_i:=F_{i-1}+F_{i-2},
// for i > 1.
{

if (n == 0) return 0;
if (n <= 2) return 1;
return fib(n-1) + fib(n-2);

} // fib
} // namespace inf

This function looks innocent at a first glance, but it can be shown that the computation of
the n’th Fibonacci number leads to exponentially many (in n) recursive function calls of the
function fib. Thus it is conceivable that the evaluation of call to fib will be slow. Such
a call consumes also much of (another) limited resource, namely, memory, though here the
consumption is not exponential in n. To see this, imagine that a recursive function call opens
another local scope (the scope associated with the function). The variables of the function
are local to this scope and hide the variable names in the calling scope. Notice that here
the only local variable is n. That is, for every open scope, i.e., function body that has not
been fully processed, there is a copy of the local variable n associated with its own memory
and value (because the parameters of the function fib are called by value). The memory
associated with a copy of n will only be deallocated (freed) when the program control leaves
the function’s scope, i.e., when all statements in the function body have been processed. Since
the allocation and deallocation of a local variable happens automatically it is called automatic
memory allocation. Note that all local variables are allocated and deallocated automatically.
There is nothing special about the local scope associated with a function. The life span of a
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local variable is from the point when the program control reaches its definition until it leaves
the scope in which it is defined.

Often, there is a better iterative alternative to a recursive implementation of a function. For
example, the following function also computes Fibonacci numbers but is much faster (the run-
ning time should be proportional to the value of the parameter nwhereas it is proportional to Fn

for the recursive implementation) and consumes less memory than the recursive implementa-
tion. In fact, in the implementation below, the memory consumption is known at compile time
whereas in the recursive implementation it depends on the (at compile time probably unknown)
parameter n.

Library: fibonacci2.h

namespace inf{
unsigned int fib(unsigned int n)
// POST: return value is the n’th Fibonacci number F_n,
// where F_0:=0, F_1:=1 und F_i:=F_{i-1}+F_{i-2},
// for i > 1.
{

if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1, b = 1;
for (unsigned int i = 3; i <= n; ++i) {
unsigned int c = a; a = b; b += c;

}
return b;

} // fib
} // namespace inf

2.4 Parser for arithmetic expressions

A programming language like C++ is a formal language. That is, it follows formal rules that
can be checked by a compiler. The compiler checks if a program that we submit to the compiler
obeys the rules of the language. If this is not the case then it stops the compilation and issues
a syntax error. The rules of a formal language are encoded in a grammar. But first we should
say what a language is.

2.4.1 Languages

A language consists of words of an alphabet. Here an alphabet is a finite set (of symbols) Σ,
i.e., the ordinary English alphabet is just a special case of an alphabet as we want to consider
them here. A word of length n is an element of the set Σn = Σ × · · · × Σ, i.e., of the n-th
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Cartesian product of Σ with itself. We set Σ0 = {ε}, where ε is the empty word, and

Σ∗ =
⋃

i≥0

Σi.

A language L is a subset of Σ∗.

2.4.2 Grammars

Grammars are a way of specifying a language in T ∗, where T is an alphabet, whose elements
are called terminal symbols. In order to specify the language, a second alphabet N is used.
The symbols in N are called non-terminal symbols. N contains a special symbol s called the
starting symbol. The last ingredient of a grammar is a set of production rules. Production rules
are of the form α → β, where α, β ∈ (T ∪ N)∗. The rules have to be read as ”α can be
replaced by β”. We say that γ can be derived directly from δ if δ = ρασ and γ = ρβσ with
ρ, σ ∈ (T ∪ N)∗ and there is a production α → β. In this case we write δ ⇒ γ. A word γ can
be derived from a word δ if there is a sequence of words σ1, . . . , σk, all in (T ∪ N)∗, such that

δ ⇒ σ1 ⇒ . . . ⇒ σk ⇒ γ.

In this case we write δ ⇒∗ γ. To summarize, a grammar is a 4-tuple G = (T, N, s ∈ N, P ),
where P is the set of production rules. The language L(G) defined by G is the following set

L(G) = {σ ∈ T ∗ | s ⇒∗ σ}.

That is, L(G) contains all words that can be derived from the start symbol s (here considered
as a word of length one) and contain only terminal symbols.

2.4.3 Examples: C++ integer and floating point literals

The integer and floating point literals are defined by grammars in the C++ standard. In a
(simplified) version the grammar for integer literals reads as follows. Note that in the way
of writing productions below, the arrows are replaced by colons (:), where each separate line
after the colon represents one way of replacing the symbol before the colon. Also, ONE OF is
a shorthand for listing all the given alternatives in separate rows.

TERMINAL SYMBOLS.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
u, U .

NON-TERMINAL SYMBOLS.
integer-literal, integer-suffix,
suffix, digits, digit.

PRODUCTIONS.
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integer-literal:
digit digits integer-suffix

digits:
digit digits
ε

integer-suffix:
suffix
ε

digit: ONE OF

0 1 2 3 4 5 6 7 8 9

suffix: ONE OF

u U

Let us check using this grammar if our examples for integer literal constants are correct.
The first example was 127 for an int literal constant. We have to show that 127 can be
derived from the starting symbol integer-literal. The following is a possible derivation of 127.

integer-literal ⇒ digit digits integer-suffix

⇒ 1 digits integer-suffix

⇒ 1 digit digits integer-suffix

⇒ 12 digits integer-suffix

⇒ 12 digit digits integer-suffix

⇒ 127 digits integer-suffix

⇒ 127 integer-suffix

⇒ 127 suffix

⇒ 127

As an example for an unsigned int literal constant we had given 0u, which can be
derived as follows from the starting symbol integer-literal.

integer-literal ⇒ digit digits integer-suffix

⇒ 0 digits integer-suffix

⇒ 0 integer-suffix

⇒ 0 suffix

⇒ 0u

We can even argue that 1.0 cannot be derived from the starting symbol since the dot . is
not a terminal symbol for integer literals. But what about the word 7u3, which consists only
of terminal symbols? Here we can argue that there is no production to put digits behind the
suffix, which would be needed here.

As our second example for a grammar let us now turn to floating point literals. Again we
present a simplified version here.
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TERMINAL SYMBOLS.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
., e, E, f, F .

NON-TERMINAL SYMBOLS.
float-literal, float-exponent,
exponent, float-suffix, suffix,
exp-sign, sign, digits, digit.

PRODUCTIONS.

float-literal:
digit digits . digits float-exponent float-suffix
. digit digits float-exponent float-suffix

digits:
digit digits
ε

float-exponent:
exponent exp-sign digit digits
ε

exp-sign:
sign
ε

float-suffix:
suffix
ε

digit: ONE OF

0 1 2 3 4 5 6 7 8 9

exponent: ONE OF

e E

sign: ONE OF

- +

suffix: ONE OF

f F

First of all it is easy to see that every floating point literal constant has to contain a dot (.),
because all words that can be derived from the starting symbol float-literal have to contain a
dot. Furthermore, floating point literal constants need not have digits both before and after the
dot, but there must at least be either a digit before or after the dot. As an example let us derive
1.2e-7f.
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float-literal ⇒ digit digits . digits float-exponent float-suffix

⇒ 1 digits . digits float-exponent float-suffix

⇒ 1. digits float-exponent float-suffix

⇒ 1. digit digits float-exponent float-suffix

⇒ 1.2 digits float-exponent float-suffix

⇒ 1.2 float-exponent float-suffix

⇒ 1.2 exponent exp-sign digit digits float-suffix

⇒ 1.2e exp-sign digit digits float-suffix

⇒ 1.2e sign digit digits float-suffix

⇒ 1.2e- digit digits float-suffix

⇒ 1.2e-7 digits float-suffix

⇒ 1.2e-7 float-suffix

⇒ 1.2e-7f

2.4.4 Parsing Arithmetic Expressions

One thing remarkable about both integer and floating point literal constants is that they are all
non-negative. The negative values can be obtained by applying the unary sign operator - to
the positive constants. Another remarkable thing about these grammars is the following: if we
read a word from left to right that can be derived from the starting symbol, then the symbol
that we read unambiguously determines which production rule to apply. If we do so for a word
that cannot be derived from the starting symbol then we will get stuck at some point. This
really remarkable fact is also true for the following grammar for simple additive arithmetic
expressions.

TERMINAL SYMBOLS.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+, - .

NON-TERMINAL SYMBOLS.
add-expr, add-expr-aux,
number, pm-expr, digits, digit.

PRODUCTIONS.
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add-expr:
number add-expr-aux

add-expr-aux:
+ number add-expr-aux
- number add-expr-aux
ε

number:
digit digits

digits:
digit digits
ε

digit: ONE OF

0 1 2 3 4 5 6 7 8 9

Let us also shortly discuss three examples. We want to check if 12+3 and 1+a and 1a are
words in the language described by the grammar above. Let us start with 12+3.

add-expression ⇒ number add-expr-aux

⇒ digit digits add-expr-aux

⇒ 1 digits add-expr-aux

⇒ 1 digit digits add-expr-aux

⇒ 12 digits add-expr-aux

⇒ 12 add-expr-aux

⇒ 12+ number add-expr-aux

⇒ 12+ digit digits add-expr-aux

⇒ 12+3 digits add-expr-aux

⇒ 12+3 add-expr-aux

⇒ 12+3

That shows that 12+3 is in our language. What about 1+a?

add-expression ⇒ number add-expr-aux

⇒ digit digits add-expr-aux

⇒ 1 digits add-expr-aux

⇒ 1 add-expr-aux

⇒ 1+ number add-expr-aux

⇒ 1+ digit digits add-expr-aux
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Since the non-terminal symbol digit cannot be replaced by the symbol a the word 1+a
cannot be in our language. Our final example is 1a.

add-expression ⇒ number add-expr-aux

⇒ digit digits add-expr-aux

⇒ 1 digits add-expr-aux

⇒ 1 add-expr-aux

The non-terminal symbol add-expr-aux cannot be replaced by the symbol a. Thus the word
1+a cannot be in our language.

We want to write a program to check the correctness (with respect to the grammar) of
an additive arithmetic expression and to evaluate this expression if it is correct. The program
makes use of the property that if we read an arithmetic expression from left to right, it is always
uniquely determined by the currently read symbol which production rule to apply. If no rule
applies then the expression cannot be correct.

Library: calc-simple.h

// Library: calc-simple.C
// Parser for additive arithmetic expressions.

// Uses the following grammar:
// add_expr: number add_expr_aux
// add_expr_aux: ’+’ number add_expr_aux
// ’-’ number add_expr_aux
// epsilon
//
// number: digit digits
//
// digits: digit digits
// epsilon
//
// digit: ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’

#include <iostream>
#include <string>
#include <cctype>
#include <stdexcept>

namespace inf{
// Parse functions for every non-terminal symbol:

57



// ----------------------------------------------

// To every non-terminal symbol of the grammar there is a
// function, which has the name of the symbol. All these
// functions have to following pre- and post conditions.
//
// PRE: [b,e) is a valid range.
// POST: ???

// NT for evaluation of expression
typedef int NT;

// iterator type
typedef std::string::const_iterator SSCI;

NT digit(SSCI& b, SSCI e)
// PRE: b can be dereferenced.

{
return *(b++) - ’0’;

}

NT digits(SSCI& b, SSCI e, const NT& left_op)
{
if (b == e || !std::isdigit(*b))

return left_op;
NT val = left_op * 10 + digit(b, e);
return digits(b, e, val);

}

NT number(SSCI& b, SSCI e)
{
if (b == e || !std::isdigit(*b))

throw std::invalid_argument("digit expected.");
NT val = digit(b, e);
return digits(b, e, val);

}

NT add_expr_aux(SSCI& b, SSCI e, const NT& left_op)
{
if (b == e) return left_op;
if (*b == ’+’) {
NT right_op = number(++b, e);
return add_expr_aux(b, e, left_op + right_op);

}
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if (*b == ’-’) {
NT right_op = number(++b, e);
return add_expr_aux(b, e, left_op - right_op);

}
return left_op;
}

NT add_expr(SSCI& b, SSCI e)
{
NT value = number(b, e);

return add_expr_aux(b, e, value);
}

} // namspace inf

Below is a little program written to test the parser.

Program: calc-simple.C

#include "calc-simple.h"

int main()
{

std::cout << "Eingabe: ";
std::string input;
std::cin >> input;

SSCI beg = input.begin();
SSCI end = input.end();
SSCI cur = beg;
try {
std::cout << inf::add_expr(cur, end) << std::endl;
if (cur != end)

throw std::invalid_argument("Unexpected character.");
} catch (std::invalid_argument err) {
std::cerr << "Parse error: " << err.what() << "\n"

<< std::string(beg, cur)
<< "|-here->"
<< std::string(cur, end) << std::endl;

return 1;
}
return 0;

}
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Let us check how this program behaves under our three examples 12+3, 1+a and 1a.
On input 12+3 the function call sequence looks as follows: The main function calls the

function for number, which calls digits, which calls digit, which ”consumes” the symbol 1
from our input string and returns control to the calling instance of the function digits, which
then calls another instance of digits, which calls digit, which ”consumes” the symbol 2 from
the input string and returns control to its calling function digits, which returns control to its
calling instance of the function number, which itself returns control to its calling instance of
the function add-expr, which now calls add-expr-aux, which ”consumes” the symbol + from
the input string and calls number, which calls digits, which calls digit, which ”consumes” the
symbol 3 from the input string and returns control to its calling instance of the function digits,
which returns control to its calling instance of the function number, which itself returns control
to its calling instance of the function add-expr-aux, which itself returns control to its calling
instance of the function add-expr, which finally returns control the function main.

On input 1+a the function call sequence looks as follows: The main function calls num-
ber, which calls digits, which calls digit, which ”consumes” the symbol 1 from the input
string returns control to its calling instance of the function digits, which itself returns con-
trol to its calling instance of the function number, which returns control to its calling instance
of the function add-expr, which now calls add-expr-aux, which ”consumes” the symbol +
from the input string and calls number. Since the next symbol in the input string is not a
digit the function number enters an exceptional state and throws an exception object of type
std::invalid argument. The execution of the function number is stopped at this point
and the program control goes through the scope hierarchy until either the exception object gets
caught with a try catch statement or it reaches the top most level, in which case the pro-
gram terminates. In our example the exception object is caught within the main function where
an error message is issued to the stream object std::cerr, which like std::cout usually
is linked to the monitor as output device. Afterwards the program is terminated.

On input 1+a the function call sequence looks as follows: The main function calls the
function number, which calls digits, which calls digit, which ”consumes” the symbol 1 from
the input string and returns control to its calling instance of the function digits, which itself
returns control to its calling instance of the function number, which itself returns control to its
calling instance of function add-expr, which now calls add-expr-aux. Since the next symbol
in the input string is neither + nor - the functionadd-expr-aux returns control to the function
add-expr, which itself returns control to the main function. In the main function an exception
object of type std::invalid argument is thrown and also caught.

2.4.5 Exceptions

Let us say a little bit more about exceptions. When a program throws an exception, execution
of the program stops at that part of the program and control is passed to another part of the
program together with an exception object. In our example the exception object is of type
std::invalid argument, which is defined in the standard library. To use it we have to
include the stdexcept library. Exception objects can be caught in a try catch statement.
The general form of a try catch statement is.
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try {
statement_1

...
statement_n

} catch (execption-type name) {
statement_(n+1)

...
statement_m

}

If in the execution of any of the statements in the try block an exception is thrown
then the execution of the try block stops at that point. If the thrown exception is of type
exception-type then the statements in the catch block get executed. The thrown excep-
tion object can be accessed under the name name in the catch block. An exception object
provides a member function what which can be called through the object using the exceptions
objects name and the dot operator .. The value returned by what in general reports more
specifically what caused the exception. It is possible to omit the name. Then the thrown excep-
tion cannot be accessed and only a general, i.e., independent of the specific object, exception
handling based only on the exception type can be performed. If this is not done, the program
continues behind the catch block. Also, if no exception is thrown when executing the try
block then the program continues behind the catch block.

2.5 Overloading function names

We have already described how the compiler looks up a declaration of a variable or function
whose name is used at some place of a program. We have distinguished between unqualified
and qualified name lookup. They differ in how the scope where to search for the name is
defined. What we have not said so far is, what happens if there is not only one but several
declarations for the name that is looked up in the scope where the name is found. Is it even
possible to have several declarations for the same name? For variables this is not possible. That
is, a variable name can be declared only once in the same scope. As the following example
shows anything else would not make sense.

int a = 7; // First declaration using the name a
unsigned int a = 8u; // Illegal declaration using also the

// name a
a += 1.0; // which variabledo we mean?

Note that it is possible though to declare the same variable name also in another scope.
Which variable is associated with a name is then determined by the name lookup rules. We
have already seen examples of this.

For functions, the situation is different. The same function name can be used several times
in declarations in the same scope. All these functions need to have different parameter lists. It
is not enough that the functions differ only in the type of their return value. See the following
examples.
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int foo(); // declaration of function foo;
void foo(); // illegal redeclaration (a function with the same

// name and parameter list was already declared in
// the same scope).

void foo(int& a); // legal redeclaration of function foo
void foo(int a); // legal declaration of function foo (no

// function with the same name and parameter
// list is declared in the same scope).

void foo(int& a){} // legal defintion of function foo
void foo(int& b){ // illegal redefinition of function foo

std::cout << "foo." << std::endl;
}

Function overload resolution. If we call a function named foo, the compiler has to attach to
the call a definition of a function foo. Therefore, the compiler first looks up the name foo
using the rules for name look up that we have discussed earlier. It is possible that the compiler
finds several declarations of a function named foo among which one has to be chosen if
possible. All functions found in the name lookup are candidates to be attached to the call.
The function overload resolution mechanism consists of the following three steps to find the
function to attach, or to decide that the function call is ambiguous.

(1) Remove all functions from the candidate list where the number of formal parameters is
different from the number of actual parameters.

(2) Remove all functions from the candidate list where the types of the actual parameters do
not match or cannot be converted into the types of the formal parameters.

(3) Select the unique function that best matches the call. If no unique best match exists then
the call is ambiguous.

It remains to clarify what a best match is. For every single parameter, ”best” is defined with
respect to a four level hierarchy of conversions:

(1) EXACT MATCH. The type of the actual and the formal parameter are the same. For a
given type T, the types T& and const T& are considered the same as T for the purpose
of overload resolution.

(2) PROMOTION. These are conversions that are guaranteed to be safe by the C++ standard,
i.e., no information gets lost in such a conversion. The only promotions we will encounter
here are: from char to int, from bool to int and from float to double.

(3) CONVERSIONS. Not necessarily safe, but according to the C++ standard allowed con-
versions. Examples are: from int to unsigned int or from int to double.

(4) USER DEFINED CONVERSIONS. These we will encounter later in the chapter on classes.
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Here, of course, an EXACT MATCH is better than a PROMOTION, which is better than a CON-
VERSION, which is better than a USER DEFINED CONVERSION.

Now, a function is called a best match, if it is for no argument worse then any other candi-
date (from the final candidate list), but it is better in at least on argument compared to any other
candidate. Under this definition, it may happen that there is no best match, in which case the
call is ambiguous, and the program is rejected by the compiler.

We conclude this section with an example for function overload resolution.

void foo(double d){
// POST: Prints foo(double) on standard output
std::cout << "foo(double) << std::endl;

}

void foo(unsigned int u){
// POST: Prints foo(unsigned int) on standard output
std::cout << "foo(unsigned int) << std::endl;

}

float f = 1.0f;
foo(f); // attached to foo(double), because float can be

// promoted to double
int i = 1;
foo(i); // ambiguous function call, since int to double

// and int to unsigned int are both conversions
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Chapter 3

Classes

3.1 Example: Rational Numbers

Suppose we want to use rational numbers in a program, i.e. numbers of the form n/d, where
both numerator and denominator are integers. C++ has no built-in type for rational numbers,
so we have to implement them ourselves.

In order to do this, we need some mechanism to introduce new types (the typedef state-
ment we have seen only introduces a new name for an already existing type). Ideally, the
new type Rational (which we plan to put into namespace inf) should be usable like other
number types; the following piece of code demonstrates how this could look like.

int main() {
inf::Rational q(1, 2); // q = 1/2
inf::Rational r(2, 3); // r = 2/3
inf::Rational x = q + r; // x = 7/6
inf::Rational y = q - r; // y = -1/6

std::cout << "q = " << q << "\n"
<< "r = " << r << "\n"
<< "q+r = " << x << "\n"
<< "q-r = " << y << std::endl;

return 0;
}

In particular, we expect that rational numbers can be added and subtracted from each other,
and that they can be written to standard output. These are expectations on the functionality
of rational numbers. In C++, the concept of classes is used to define a new type through its
functionality. In designing a class we therefore have to think about the desired functionality
first.
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We have already seen another type which is actually realized as a class, namely the type
std::vector<T>. Other people have thought about the functionality vectors should have,
and they have realized it through types and functions belonging to the class. Here are some
examples we have seen.

class functionality realization
std::vector<T> size of v v.size()

start iterator of v v.begin()
past-the-end iterator of v v.end()

Because the realization is only the second step, let’s draft the first two columns of a similar
table for inf::Rational. This table may not be complete for the rational numbers the
reader has in mind, but it lists some functionality that makes the type already quite useful.

class functionality
inf::Rational construction of q from two integers

construction of q from one integer (conversion)
access to numerator of q
access to denominator of q
addition of q and r
subtraction of q and r
multiplication of q and r
division of q and r

The reason for not listing input (from std::cin, say) and output (to std::cout, say)
is that this is more naturally realized as functionality of the respective streams (we’ll see why).

3.2 Class Declaration

The informal specification of the functionality attached to the rational numbers can more or less
directly be translated into a C++ class declaration. Within namespace inf, we would write the
following piece of code, parts of which will still be obscure to the reader and only explained
below. The point here is that there is essentially a one-to-one mapping between the informal
functionality specified in the previous section and the public part of the formal declaration
in terms of a class. This mapping is only ‘essentially’ one-to-one, because we have the four
arithmetic operators only in the variants +=, -=, *= and /=; we will see that there is good
reason for this.

// Class for representing rational numbers
class Rational {
public:
typedef int NT; // allows us to replace ’int’ easily

Rational(const NT& n, const NT& d);
// PRE: d != 0.
// POST: rational number initialized as n / d.
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Rational(const NT& n);
// POST: rational number initialized as n / 1.

const NT& n() const;
// POST: return value is the numerator

const NT& d() const;
// POST: return value is the denominator

Rational& operator+=(const Rational& x);
// POST: x was added to *this

Rational& operator-=(const Rational& x);
// POST: x was subtracted from *this

Rational& operator*=(const Rational& x);
// POST: *this was multiplied by x

Rational& operator/=(const Rational& x);
// PRE: x.n() != 0
// POST: *this was divided by x

private:

void normalize();
// POST: the value remains unchanged, but numerator and
// denominator are relatively prime, and d is positive

NT n_; // numerator
NT d_; // denominator

// Invariant: d_ > 0 und (n_,d_) is normalized
};

3.2.1 Member functions

The functions listed in the scope of the class declaration are called member functions of the
class, because they ‘belong’ to the class. The meaning of this is that member functions are
always called for an object of the class, and this object is an implicit parameter of the function.
For example, the call q.n() returns the numerator of the rational number q. The const
qualifier behind the declaration of a member function refers to this implicit parameter. In case
of the member function const NT& n() const, for example, the qualifier indicates that
q will not be changed through a call to q.n().
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If the member function needs to access the implicit parameter for which it was called, some
special syntax is necessary; unlike the other parameters, the implicit one does not have a name
within the function’s scope. The keyword this encodes a reference to the implicit param-
eter, and just like with regular references, *this is the parameter itself, obtained through
dereferencing.

Just to avoid confusion with the various const’s, recall that the first const in the declara-
tion of n() refers to the return type const NT&: a reference to the numerator which does not
allow write access to the referenced variable. We could have replaced const NT& globally
with NT without changing the way the class can be used, and if NT is an alias for int, there is
not much of a difference between the two variants. However, if we later decide to replace int
by some other type representing integers, the call by value semantics might be very costly in
case objects of this other type need large amounts memory for some reason.

The class declaration might as well contain the full member function definition, rather
than just the declaration. However, clean pre- and postconditions should already specify the
behavior of the member function, in which case the actual implementation is not relevant for
a user of the class inf::Rational. Therefore, it is good practice to define the member
functions outside of the class declaration, prefixed (within namespace inf) with the qualifier
Rational::. To be consistent with our earlier way of building a library, we should put the
class declaration as given above into some .h file, while the implementations of the member
functions appear in a corresponding .C file.

3.2.2 Data members

The variables listed in the class declaration are called data members of the class. Each object
of the class is physically (i.e. in memory) represented by corresponding variables. In case of
the class inf::Rational, declaring two data members of type int means that each object
of the type inf::Rational is represented by two int’s, which is just what we expect.
The syntax for accessing data members is the same as for member functions: q.n_ is the
numerator of the rational number q. Within a member function of the class, data members and
also member functions can be accessed unqualified (without the ‘.’), in which case they refer
to the implicit parameter the function is called with. For example, when we implement the
member function n(), we would simply return n_; instead of return (*this).n_;
which would also be allowed but is less compact.

3.2.3 Public and Private

If a member function or data member is declared private, it can only be accessed within
member functions of the class itself. For example, to the piece of code in the beginning of the
chapter that shows the usage of rational numbers, we might add

std::cout << "Numerator of q = " << q.n() << "\n"
<< "Denominator of q = " << q.d_ << std::endl;

This will give an error message, because the data member d_ is private; it cannot
be called outside a member function of inf::Rational, but we are trying to call it from
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main(). Calling q.n(), on the other hand, is allowed, because the member function n() is
public, meaning that there are no restrictions to its use.

Typically, the private section of a class declaration corresponds to functionality the class
does not want to present to the outside world. In our case, the member function normalize
is of this type. We assume that the user of inf::Rational is interested only in the value
of a rational number, but not in its representation. Because normalize does not change the
value, it is not a public method. You could argue that the functions n() and d() should
not exist (or at least not be public) for the same reason. On the other hand, you can say that
it should be possible to get some representation of the value as a pair of integers. In this (and
many other cases), the borderline between the public and the private part of a class is not
obvious to draw; rather, it depends on the ideas of the class designer, the intended users, and
other factors.

Even if we agree to offer public access to the numerator and denominator of a rational
number, you could say that the corresponding member functions n() and d() are superfluous:
why not make the corresponding data members n_ and d_ public, at the same time renaming
them to n and d? Then, a user could simply (and more compactly) write q.n instead of
q.n().

The problem with this approach is that a user could then also write q.d=0, putting q into
an undefined state. You as an educated user would of course never do this, but the point of
controlled access via the public and private keywords is to prevent less educated users
from doing things they should not do. Even you might write q.d=2, not knowing that after
this assignment, q could violate the (internal) invariant that numerator and denominator are
relatively prime.

We are only allowed to make data members public if there are no preconditions on their
joint values. For example, if you declare a type inf::complex whose data members are

double re; // the real part
double im; // the imaginary part

any combination of values of re and im leads to a legal complex number, so it’s at least
no obvious blunder to make these data members public. It’s still a bad idea, though: a complex
number is one entity with certain functionality, and not just a pair of real numbers—this is
exactly the point of building a class representing complex numbers.

Good programming style is therefore to always declare data members private and allow
controlled acccess (whether it only reads a data member or modifies it) through public member
functions.

3.2.4 Constructors

These are special member functions with a special declaration and call syntax. They carry the
name of the class, and they have no return type. A constructor call declares and initializes a
variable of its respective class. For example, the constructor

Rational(const NT& n, const NT& d)
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// PRE: d != 0.
// POST: rational number initialized as n / d.

is called when you write inf::Rational q(1,2);. This statement defines a variable
q of type inf::Rational and initializes it with the rational number 1/2. A class can (and
typically will) have several constructors, and the regular rules of overloading resolution apply.

Constructors with one parameter play a special role: they are user-defined conversions. For
example, the constructor

Rational(const NT& n);
// POST: rational number initialized as n / 1.

is a user-defined conversion from NT (in our case int) to inf::Rational, and this
conversion will be considered by the compiler during the process of finding the overloaded
function that best matches the actual call. For instance, under the presence of this constructor
we may write

Rational q(1,2);
q += 1; // q = 3/2

In this case, the actual parameter (the int value 1) is converted to the type of the formal
parameter (inf::Rational) of the member function

Rational& operator+=(const Rational& x);

3.3 Operators

Most operators existing for built-in types in C++ can be overloaded to work for other types as
well, and this is particularly useful in connection with user-defined classes.

For example, we have seen that the (binary) multiplication operator * is defined for all built-
in number types, but we would like to use it for objects of the class inf::Rational as well.
There are two different ways of achieving this: we can declare the operator as a one-argument
member function of the class inf::Rational (as you can see from the class declaration
above, this is the variant not chosen here), or we can declare it as a two-argument non-member
function. In both cases, we can reduce the computation to the member function *=. The
benefit of operator overloading is the possibility of simply writing q*r (infix notation). Only
this feature makes it possible to reach our initial goal of making our own rational numbers as
easy and convenient to use as built-in numbers.

The first variant looks like this (class declaration and implementation in namespace inf).

// class declaration
class Rational {

...

69



Rational operator*(const Rational& x) const;
// POST: return value is the product of *this and x
...

};

// class implementation
Rational Rational::operator*(const Rational& x) const {

Rational z = *this;
z *= x;
z.normalize();
return z;

}

// main program
int main() {

...
Rational s = q*r; // equivalent to s = q.operator*(r);
...

}

In this variant, the first argument of the binary operator * is an implicit parameter—the
object the operator was called for. The second variant is this:

// global function in namespace inf
Rational operator*(const Rational& x, const Rational& y) {

Rational z = x;
z *= y;
z.normalize();
return z;

}

// main program
int main() {

...
Rational s = q*r; // equivalent to s = operator*(q,r);
...

}

In this second variant, both arguments to the binary operator * are explicit parameters.
From a user’s perspective, there seems to be no difference between the two variants—in both
cases, one can write q*r, and the effect is the same. Still, the second variant is preferred in
practice, because it is symmetric in the two arguments. Then, with the user-defined conversion
from int to inf::Rational at our disposal, both expressions q+1 and 1+q are well-
defined and equivalent, if q is of type inf::Rational. In contrast, if operator* comes
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as a member function, the symmetry is broken, because the implicit argument is the first one
and the explicit one the second. In this situation, q+1 will work, but 1+q won’t! The reason is
that 1 is not an object of the class inf::Rational, so operator* cannot be called for it.
The user-defined conversion doesn’t help here—in order to make use of it, the compiler would
first have to find it, by going through all possible classes X that have

• an operator* with parameter of type inf::Rational, and

• a user-defined conversion from int to X.

Even if in many cases (including ours) only one such class X exists, this type of lookup is not
supported by C++. Member functions of a class X can only be called for objects of class X.

3.4 Input and Output

As already indicated, input and output of rational numbers are most naturally realized as
stream-manipulating global operators operator>> (for std::cin) and operator<< (for
std::cout). It would also be possible through a member function of inf::Rational to
tell a rational number how to write itself to a given stream, but then the ’standard’ notation

std::cout << q; // equivalent to operator<<(std::cout, q)

would not be possible, because the implicit argument q would have to come first.

3.5 Class Implementation

Here is the implementation of the class inf::Rational (in namespace inf), along with
the global functions for input, output and the arithmetic operations that logically belong to the
class. In addition, overloaded operators are available for comparison of two rational numbers.

The only feature not explained so far is the constructor syntax. Most obviously, construc-
tors have no return type; beyond that, they have a special section between the signature
and the function body, called the initializer list. In this list, the data members are set from
the constructor’s parameters; the task of the constructor’s body is then to perform additional
computations that are necessary for proper initialization (in our case, normalization).

Rational::Rational(const NT& n, const NT& d) : n_(n), d_(d)
{ normalize(); }

Rational::Rational(const NT& n) : n_(n), d_(1) {}

const Rational::NT& Rational::n() const { return n_; }
const Rational::NT& Rational::d() const { return d_; }

void Rational::normalize()
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{
NT na = n_;
if (n_ < 0) na = -na;
NT g = inf::gcd(na, d_);
n_ /= g;
d_ /= g;
if (d_ < 0) {

d_ = -d_;
n_ = -n_;

}
}

Rational& Rational::operator+=(const Rational& x)
{
n_ = n_ * x.d_ + x.n_ * d_;
d_ *= x.d_;
normalize();
return *this;

}

Rational& Rational::operator-=(const Rational& x)
{
n_ = n_ * x.d_ - x.n_ * d_;
d_ *= x.d_;
normalize();
return *this;

}

Rational& Rational::operator*=(const Rational& x)
{
n_ *= x.n_;
d_ *= x.d_;
normalize();
return *this;

}

Rational& Rational::operator/=(const Rational& x)
{
assert(x.n() != 0);
n_ *= x.d_;
d_ *= x.n_;
normalize();
return *this;

}
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Rational operator+(const Rational& x, const Rational& y)
// POST: return value is x + y.
{
Rational z = x;
z += y;
return z;

}

Rational operator-(const Rational& x, const Rational& y)
// POST: return value is x - y.
{
Rational z = x;
z -= y;
return z;

}

Rational operator*(const Rational& x, const Rational& y)
// POST: return value is x * y.
{
Rational z = x;
z *= y;
return z;

}

Rational operator/(const Rational& x, const Rational& y)
// POST: return value is x / y.
{
Rational z = x;
z /= y;
return z;

}

//
// global functions
//

bool operator==(const Rational& x, const Rational& y)
{ return x.n() * y.d() == x.d() * y.n(); }

bool operator!=(const Rational& x, const Rational& y)
{ return !(x == y); }

bool operator<(const Rational& x, const Rational& y)
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{ return x.n() * y.d() < x.d() * y.n(); }

bool operator>(const Rational& x, const Rational& y)
{ return y < x; }

bool operator<=(const Rational& x, const Rational& y)
{ return !(y > x); }

bool operator>=(const Rational& x, const Rational& y)
{ return !(x < y); }

std::ostream& operator<<(std::ostream& o, const Rational& x)
{ return o << x.n() << "/" << x.d(); }

3.6 Pointer Types

Up to now, we have argued that all objects of a given type T have some fixed memory size,
known to the compiler. Whenever a variable of that type is defined within some scope, or
when it is passed to a function as a parameter, the required memory is allocated. After the
variable has ‘run out of scope’, or after the function call has been fully processed, that memory
is automatically freed again. All memory managed in that way is kept on the so-called stack.

However, we have already met one type whose size is not fixed: the type vector<T>,
or vector<int>, to be concrete. Indeed, adding elements to the vector using its member
function push_back increases the vector’s size at runtime of the program, so the compiler
can’t possibly know the size beforehand. In order to implement the push_back functionality
of the type vector<int>, there must be some mechanism to get memory for a new variable
of type int. Most importantly, the lifetime of that variable must be independent from the
current scope—we don’t want its memory to be freed when the call to push_back has been
processed.

In C++, such a dynamic storage management mechanism is realized through the concept
of pointers.

If T is any type, a variable of the derived type T* has as its value the address of an object
of type T in memory. T* is a pointer type, and objects of this type are pointers to T.

Pointers are not a brand-new concept for us. We have already worked with iterators to quite
some extent, and they behave similarly.

Dereferencing. Pointers can be dereferenced in the same way as iterators: if p is of type T*
and stores some address, then *p is the object of type T at that address. Here, * is a unary op-
erator. A precondition for this to work is that an object of type T actually lives at that address.
Unfortunately, pointers are a rather primitive concept (inherited from the C language), and they
provide no way of checking this precondition. Any programmer working with pointers will
at some point see his or her program crash with the error message segmentation fault.
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This often means that a pointer to some type T was dereferenced, but that nobody (or an object
of another type, or even just a part of some larger object) lives at the corresponding address.
The simplest program that may evoke such a crash is this:

int main() {
int* p; // uninitialized pointer
*p = 5; // uh-oh, we write to some ’random’ address
return 0;

}

The address operator. The operation inverse to dereferencing is the operation of taking the
address. When we write

int i = 5;
int* p = &i;
std::cout << *p; // outputs 5

we define p to be a pointer to intwhich stores the address &i of the variable i. Dereferencing
that pointer yields the value of i, in this case 5.

3.6.1 The new statement

Given any type T with constructor T(...), the statement new T(...)

• allocates new memory for a variable of type T,

• initializes this variable by calling the constructor T(...), and

• returns the address of the new variable.

For example, when we write

inf::Rational* q_ptr = new inf::Rational(1,2);

memory is allocated for a new variable of type inf::Rational, and this variable is initial-
ized with the value 1/2. The address of the new variable is returned and stored in the pointer
variable q_ptr. Even when the pointer variable q_ptr runs out of scope, the newly allocated
memory will remain blocked until it is explicitly deleted.

3.6.2 The delete statement

The delete statement is the counterpart to the new statement. If p is a pointer to type T,
delete p frees the memory for the object of type T at address p, under the precondition
that memory for this object has been allocated at this address using the new statement. Fur-
thermore, every piece of memory allocated with new must later be freed with delete. Thus,
new and delete always come in matching pairs.
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Forgetting to delete is a common error, because it passes unnoticed in many cases. The
effect is a so-called ‘memory leak’ which over time could lead to computer memory being full,
although most of that memory is not needed anymore. Calling delete more than once for
the same memory location is another typical error, but this one is more dangerous and leads to
corrupt memory structure.

3.7 Example: Lists

We want to demonstrate how to work with pointers using the list concept. Like the vector,
a list is a data structure for storing sequences of objects, but unlike a vector, it allows efficient
insertion and deletion of elements at any position in the list (recall that a vector supports only
insertion and deletion at the end).The idea to achieve this is the following: the elements of the
list are no longer at consecutive positions in memory; instead, they may be scattered all over
the memory, but each element knows the address of its predecessor and its successor in the
list. That way, the sequence of elements can be recovered, even though the elements are not
sequentially arranged in memory. The picture for this situation is as follows.

4 4
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Consider the left picture first: each element has two arrows, one pointing to its predecessor
(solid), and one to its successor (dashed). We call this a doubly-linked list.

A practical implementation uses a sentinel to avoid special cases when dealing with an
empty list, or with the first and last elements. The sentinel is an artificial list element whose
successor is the first ‘real’ element of the list, and whose predecessor is the last real element of
the list. With the sentinel, an empty list is represented like this:

PSfrag replacements sentinel

Let’s discuss how we can efficiently delete an arbitrary list element x. Assume, p is the
predecessor of x and s its successor. Then we want to transform the left into the right situation
in the following picture.
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To do this, we

• make s the new successor of p,

• make p the new predecessor of s,

• delete x by freeing its memory

Next, we consider insertion of an element x before another element s. Let p be the pre-
decessor of s. The insertion then corresponds to the transformation in the following picture,
which is exactly inverse to the previous deletion.
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To perform this transformation, we

• allocate new memory for x and initialize it with x,

• make p the predecessor of x, and s its successor, and

• make x the new successor of p as well as the new predecessor of s.

It is clear that the work to be done for insertion and deletion does not depend on the number
of elements currently stored in the list—it is constant. There is a price to pay, though: unlike
the vector, the list does not offer random access anymore: we cannot directly ’jump’ to the
element at position i, but we have to start at the sentinel and walk along the successor arrows
until we have found it (we could also walk along the predecessor arrows, but if the element is
somewhere in the middle of the list, both variants take long). The following table summarizes
the situation and shows that the list is not globally better than the vector, and vice versa. Which
data structure to use therefore depends on the application.

operation vector list
insertion of elements only at the end anywhere
deletion of elements only at the end anywhere
time to access elements constant proportional to element’s position
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3.8 Lists in C++: The Basics

Let us see how the above list with its functionality (efficient insertion and deletion) can be
realized in C++. It will not come as a surprise to you that we will write a class List
(as usual, within namespace inf), and that we represent successor and predecessor arrows as
pointers; but before that, we focus on the building block of the list, namely the list element with
its predecessor and successor arrows. This building block deserves a class of its own, with the
following (preliminary) declaration.

class ListElement {
public:

int data; // let’s assume we want to store int’s

// constructor
ListElement (int x, ListElement* prev, ListElement* next);
// POST: initializes the element with x, sets the
// predecessor pointer to p and the successor
// pointer to s

private:
ListElement* prev_; // predecessor pointer
ListElement* next_; // successor pointer

};

We see that the class has three data members, a public one for the data item stored, and
two private pointer variables, representing the predecessor arrow (prev_) and the successor
arrow (next_). Pointers are just what we need to realize our doubly-linked list. Recall that
with every list element, we want to store the address of its predecessor, and the address of
its successor (which both are of type ListElement). Equivalently, we want to store two
pointers to ListElement, and this is exactly what we have declared above.

class List {
public:

void insert (int x, ListElement* s_ptr);
// PRE: s_ptr points to some list element s
// POST: x has been inserted into the list before s

void push_back (int x);
// POST: x has been appended to the list

void erase (ListElement* x_ptr);
// PRE: x_ptr points to some list element x != sentinel
// POST: x has been deleted from the list
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private:
ListElement sentinel;

};

In implementing the member functions insert and erase of the class List, we pre-
cisely follow the informal procedures given in the previous section. Let us start with the inser-
tion.

3.8.1 Insertion

void List::insert (int x, ListElement* s_ptr) {
// allocate new memory for x and initialize it with x;
// make p the predecessor of x, and s its successor
ListElement* x_ptr = new ListElement (x, s_ptr->prev_, s_ptr);

// make x the new successor of p
x_ptr->prev_->next_ = x_ptr;

// make x the new predecessor of s
x_ptr->next_->prev_ = x_ptr;

}

This function contains two new features.

The -> operator. Writing s_ptr->prev_ is an abbreviation of (*s_ptr).prev_. The
operation of calling a member function (or—in this case—accessing a data member) of the
object at a given address is so frequent that this shortcut has been introduced in order to make
code more readable.

In the insert function above, s_ptr->prev_ is therefore the address of p, the prede-
cessor of s. Consequently, the constructor call

ListElement (x, s_ptr->prev_, s_ptr)

generates a new list element with content x, predecessor p and successor s, as desired.
After executing the new statement, the variable x_ptr therefore holds the address of the

new list element, and the two subsequent statements of insert use this address to reset p’s
successor and s’s predecessor to this new element (note that after the constructor call, p and s
are accessible through x_ptr->prev_ and x_ptr->next_).

Access to private members of another class. We have said before that member functions
and data members declared private in some class can only be accessed by member func-
tions of that class. In our implementation of insert above, this rule is violated: a member
function of the class List accesses the private data members prev_ and next_ of some
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ListElement object. There is a mechanism to make this legal: the class List can be a
friend of the class ListElement, and as a friend, it has access to the private members. To
implement this, we need to add the line

friend class List;

to the public part of the ListElement’s declaration. Unlike in real life, this friendship rela-
tion is usually not symmetric, and for our purposes it is absolutely not necessary to make the
class ListElement a friend of the class List. An alternative to the friend mechanism is
to declare the functionality in question as public, but this is like sharing one’s love-sickness
with the whole world.

The push_back member function is easily reduced to insert.

void List::push_back (int x) {
insert (x, &sentinel);

}

3.8.2 Deletion

Here is the counterpart to the List’s insertmethod, the erasemethod. Again, we closely
follow the informal procedure given in the previous section.

void List::erase (ListElement* x_ptr) {
// make s the new successor of p
x_ptr->prev_->next_ = x->next_;

// make p the new predecessor of s
x_ptr->next_->prev_ = x->prev_;

// delete x by freeing its memory
delete x_ptr;

}

3.8.3 Object Lifetime

Although we have talked about object lifetime above, let us try to make this concrete for the
case of lists. Recall that there are two mechanisms for defining new variables. The one we are
used to is the automatic allocation which would take place when we write

ListElement l(x, s_ptr->prev_, s_ptr);

This introduces a variable l of type ListElement which is local to the scope in which it
was defined. Outside of this scope, l is not accessible anymore, and the memory occupied by
l is automatically freed (to be reused by the system later) when l runs out of scope.

The dynamic allocation takes place when we write (as above)
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ListElement* x_ptr = new ListElement (x, s_ptr->prev_, s_ptr);

This introduces a variable of type ListElement at the address x_ptr, but the difference
to the automatic allocation is that this variable exists until its memory is explicitly freed. The
pointer variable x_ptr that holds the address of the list element has been automatically al-
located, so this pointer to the list element is not accessible outside the scope in which it was
defined. The list element itself persists, but we must make sure that it’s address is not forgotten.
In the function insert above, this is done by putting the address into the successor pointer of
p and the predecessor pointer of s, thereby integrating the element into the list.

To make the point still more clear, let us consider the following version of insert which
performs the same computations as the one above. Instead of allocating x dynamically, we do
it automatically, but we still copy its address to the appropriate pointers of s and p.

void List::insert (int x, ListElement* s_ptr) {
// allocate new memory for x and initialize it with x;
// make p the predecessor of x, and s its successor
ListElement l(x, s_ptr->prev_, s_ptr);

// make x the new successor of p
l.prev_->next_ = &l;

// make x the new predecessor of s
l.next_->prev_ = &l;

}

The trouble is that in this version, the list becomes corrupt as soon as the call to insert
has been processed. As a automatically allocated object, l runs out of scope at the end of
insert, and its memory is automatically freed. As a consequence, the address &l stored
in the successor pointer of s and the predecessor pointer of p is no longer the address of an
existing list element. Dereferencing the corresponding pointer leads to a fatal runtime error.

3.8.4 Destructors

As a consequence of the above consideration regarding object lifetime, we must carefully think
about who is responsible for explicitly freeing memory allocated with new. We must avoid
double responsibilities, but we must also not forget to put someone in charge. In case of our
class List above, we haven’t done that. Consider the following piece of code.

int main () {
inf::List list;
list.push_back(5);

}

During the call to list.push_back(5), memory has been allocated with new, but
there is no corresponding delete statement. The logical solution would be that these dele-
tions take place when the automatic variable list runs out of scope. We haven’t mentioned
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it yet, but when a class variable runs out of scope, naturally all its data members (in this case,
just the sentinel) run out of scope. This means, the memory for the sentinel is being freed
automatically, but not the memory for the proper list elements.

In order to handle this situation elegantly, we can implement a destructor for the class
List. This member function is a counterpart to any constructor and is automatically called
for any object of the class that runs out of scope or is explicitly deleted. The purpose of the
destructor is to implement clean-up work beyond the default operation of freeing the memory
for the data members.

A destructor is named after its class, but with a trailing ‘˜’, and with no arguments (it is
called automatically, so there is no way of providing arguments). To the declaration of the class
List (public part), we add

˜List ();
// POST: memory for all list elements has been freed

The implementation is as follows: starting from the successor of the sentinel, we go through
the list and delete its elements. We stop as soon as the sentinel is reached. In the code below,
it is important to remember the successor pointer of an element before deleting it, because after
deletion, this information is not accessible anymore.

List::˜List () {
for (ListElement* p = sentinel.next_; p != &sentinel;) {

ListElement* s;
p = p->next_;
delete s;

}
// now the list is empty

}

3.9 A full List in C++

3.9.1 Iterators

The primitive list we have implemented above is not usable as is; for example, there is no func-
tionality to iterate over all elements of the list, and there is also no way of obtaining a pointer
to a specific list element. Currently, we can only add elements to the list using push_back,
but later, they are unaccessible. The natural solution is to add iterators to the list. The benefit
of this is that many iterator-based functions that work for other containers (like vector<T>)
immediately work for our class List as well – we simply need to change the iterator type.

One iterator-based function we have seen before finds the smallest element within a range,
and we have used it for vectors. Having a type List::const_iterator with the right
functionality lets us apply the code to lists as well:
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typedef List::const_iterator It;
It min_element(It b, It e)
// PRE: [b,e) is a valid range.
// POST: return value is e when the range is empty, otherwise
// it is the first iterator i in [b,e), for which the
// following holds: for all j in [b,e): *i <= *j.
{
if (b == e) return e;
It m = b++;
for (; b != e; ++b)

if (*b < *m) m = b;
return m;

}

To realize list iterators, we define a class ListConstIterator, with (part of its) func-
tionality as follows. Essentially, an iterator is a pointer, with added functionality. The most
interesting new features are the ++ operators (pre- and postincrement, the latter with an arti-
ficial int argument to distinguish between them—this argument is not provided during the
call).

class ListConstIterator {
public:
typedef ListConstIterator This; // just an abbreviation

// construction from pointer
ListConstIterator(const ListElement* p) : ptr_(p)
{}

// operator== is a friend of mine
friend bool operator==(const This& x, const This& y);

// Dereferencing
const int& operator*() const {

return ptr_->data;
}

// Preincrement
This& operator++() {

ptr_ = ptr_->next_; return *this;
}

// Postincrement
This operator++(int) {

This t = *this; ++*this; return t;
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}

// class List is a friend of mine
friend class List;

private:
// const pointer; object at that address cannot be modified
// through this pointer
const ListElement* ptr_;

};

In order for this to work, the class ListConstIterator needs to be a friend of the
ListElement, otherwise, the iterator class could not access the next_ data member of the
ListElement.

After adding (to the public part of the declaration of class List)

typedef ListConstIterator const_iterator;
const_iterator begin() const {

return const_iterator(sentinel.next_);
}
const_iterator end() const {

return const_iterator(&sentinel);
}

and writing the global comparison operators

bool operator==(const ListConstIterator& x,
const ListConstIterator& y)

{ return x.ptr_ == y.ptr_; }
bool operator!=(const ListConstIterator& x,

const ListConstIterator& y)
{ return !(x == y); }

the above piece of code for finding the minimum element within a range already works
for our lists. A full-fledged implementation of the doubly-linked list iterator concept has more
features: there is also a non-const type ListIterator, there are the decrement operators --,
and there are additional types required for an iterator to work properly within all the iterator-
based algorithms from the standard namespace.

Once we have list iterators, we should also adapt the functions insert and erase
to deal with them (for this we need the non-const version ListIterator). In case of
insert, this easy modification looks as follows. Observe that the class List is a friend
of the ListIterator, so it can access the private data member ptr_ of the iterator object
s_it.
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void List::insert (int x, ListIterator s_it) {
// allocate new memory for x and initialize it with x;
// make p the predecessor of x, and s its successor
ListElement* x_ptr = new ListElement

(x, s_it.ptr_->prev_, s_it);

// make x the new successor of p
x_ptr->prev_->next_ = x_ptr;

// make x the new predecessor of s
x_ptr->next_->prev_ = x_ptr;

3.9.2 The Copy Constructor

A frequent operation in a program is that of making a copy of an object. For example, when
we write int i = j;, the value of j is copied to the variable i. We should be able to do
the same also with objects of a class: in writing List l2 = l1; we expect l1 to become a
copy of the list l2. Indeed, the compiler will accept this statement, but the effect is not the one
we want. By default, the data members of l1 are copied, which is not the same as copying the
list: the sentinels of l1 and l2 will be different objects, but these are the only objects copied
by default; both sentinels have the same successor and predecessor pointers, meaning that the
lists share their elements. On top of that, l2 will not even be a well-formed list, because the
successor of its last element is still the sentinel of l1.

In a real copy, we want to duplicate the list elements, and this is what the copy constructor
is for. In general, if T is some type, the (unique) constructor of the form

T (const T& t);

is the copy constructor, and it is called whenever you write T t2 = t1, or equivalently
T t2(t1). Not providing this constructor leads to the default behavior described above.

In order to implement this constructor, let’s first add a function

void append (const_iterator b, const_iterator e);
// PRE: [b,e) is a valid range of list elements
// POST: the range has been appended to *this

to the class List. The important thing is that this range could be from some other list. The
implementation is straightforward.

void List::append (const_iterator b, const_iterator e) {
for (; b != e; ++b)

push_back (*b);
}

Given this, the copy constructor looks as follows.
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List (const List& l)
: sentinel (0, 0, 0)

{
sentinel.next_ = &sentinel;
sentinel.prev_ = &sentinel;
append (l.begin(), l.end();

}

In the initializer list, we call the constructor for the ListElement (and this is the only
place where we can call it). The first 0 refers to the data item being stored (which is irrelevant
for the sentinel). The other two 0’s are null pointers. Setting a pointer to 0 is the common way
of initializing it without having an actual object it points to. It is guaranteed that 0 is never the
address of an object, and that calling delete with a null pointer as argument has no effect.

Within the body of the constuctor, the successor and predecessor pointers of the sentinel
are properly initialized to yield an empty list, to which the elements of the list to be copied are
then appended.

The copy constructor is also called when a List object is passed to a function as a call-
by-value argument, and when a function returns an object of type List.

3.9.3 The Assignment Operator

When you write

int i;
i = j;

this is in C++ terminology an assignment. While the copy statement int i=j initializes a
fresh variable that has no previous value, the assignment i=j replaces the current value of
the variable by another value. When l1 and l2 are objects of the class List, the statement
l2 = l1; invokes the assignment operator of the class List. By default (i.e. if no as-
signment operator is present), the assignment is again member-wise, i.e. l2 would as before
become a corrupt ’pseudo-copy’ of l1.

In general, if T is some class T, the (unique) member function of the type

T& operator=(const T& t)

is the assignment operator. In principle, it works like the copy constructor, but it has to take
care of some extra things:

1. ‘Destroy’ the old value before replacing it with the new value. This is of particular
importance when the old value involves dynamically allocated memory, like in the case
of List.

2. If &t = this, the two objects involved in the assignment are physically the same
object, and nothing should happen. This is not only a performance issue: consider the
situation in which you write l=l for a List l. First destroying l in order to set it to its
new value l then doesn’t work, because by that time, l is already gone.
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3. Return the new value. This allows chains of assignments like l3 = l2 = l1;

It seems that the destructor of the class might come in handy for the task in 1, but since
it cannot explicitly be called, we need a (typically private) member destroy which can also
be called by the destructor then. In case of the List, it doesn’t cost anything extra to have a
slightly more general variant that destroys a range.

void destroy (iterator b, iterator e);
// PRE: [b,e) is a valid range in *this
// POST: *[b,e) has been removed from *this

The implementation mimics the destructor. Here, the post-increment operator leads to a
compact way of writing the code.

void List::destroy (iterator b, iterator e) {
for (; b != e; ) erase((b++).ptr_);

}

Finally, we can provide the assignment operator

List& operator= (const List& l);
// POST: l has been assigned to *this

and its implementation.

List& List::operator= (const List& l) {
if (&l != this) {

destroy (begin(), end());
append (l.begin(), l.end());

}
return *this;

}

3.9.4 The Default Constructor

The constructor with no arguments (empty argument list) is called the default constructor. A
class is not required to have a default constructor. For example, the class inf::Rational
doesn’t, because it is not clear what a default rational number is. 0 and 1 are good candidates,
of course, but which one we want depends on the context.

If, on the other hand, the class T has a default constructor, we can define a variable of the
class by simply writing T t;, and the default constructor is called to initialize t. For example,
the class List should have a default constructor

List();
// POST: creates an empty list
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with the following implementation.

List::List()
: sentinel (0, 0, 0)

{
sentinel.next_ = &sentinel;
sentinel.prev_ = &sentinel;

}

A class without any explicit constructors has a default constructor by default, simply initial-
izing the data members through their default constructors. Also, a data member not appearing
in the initializer list of a constructor is default-constructed when the constructor in question
is called. Default construction of built-in types (which are not classes) is defined to generate
unitialized variables (like in int i;).

If a class has some explicitly provided constructors, the default constructor must also ex-
plicitly be declared in order to exist. This can lead to the counterintuitive phenomenon that
some code does not compile anymore after adding a constructor to some class. Namely, all of
a sudden, that class may no longer have the default constructor needed in some other part of
the code.
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