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2.6 Arrays and pointers

Reading into an array without making a ”silly error” is be-
yond the ability of complete novices - by the time you get that
right, you are no longer a complete novice.

Bjarne Stroustrup, C++ Style and Technique FAQ

This section introduces arrays as containers for sequences of objects of
the same type, with random access to indwidual members of the sequence.
An array is the most primitive but at the same time a very efficient con-
tainer for storing, processing, and iterating over large amounts of data.
You will also learn about pointers as ezxplicit object addresses and about
their close relationship with arrays. While the C++ standard library
contains less primitive and generally better alternatives, the concepts be-
hind arrays and pointers are of fundamental importance.

In Section 2.4 on control statements, we have learned about the concept of iteration.
For example, we can now iterate over the sequence of numbers 1,2,...,n and perform
some operations like adding up all the numbers, or identifying the prime numbers among
them. Similarly, we can iterate over the odd numbers, the powers of two, etc.

In real applications, however, we often have to process (and in particular iterate over)
sequences of data. For example, if you want to identify the movie theaters in town that
show your desired movie tonight, you have to iterate over the sequence of movie theater
repertoires. These repertoires must be stored somewhere, and there must be a way to
inspect them in turn. In C++, we can deal with such tasks by using arrays.

2.6.1 Array types

An array of length n aggregates n objects of the same type T into a sequence. To access
one of the aggregated objects (the elements), we use its indez or subscript (position)
in the sequence. All these length-n sequences form an array type whose value range
corresponds to the mathematical type T™. In the computer’s main memory, an array
occupies a contiguous part, with the elements stored side-by-side (see Figure 6).

Let us start by showing an array in action: Eratosthenes’ Sieve is a fast method for
computing all prime numbers smaller than a given number n, based on crossing out the
numbers that are not prime. It works like this: you write down the sequence of numbers
between 2 and n— 1. Starting from 2, you always go to the next number not crossed out
yet, report it as prime, and then cross out all its proper multiples.

Let’s not dwell on the correctness of this method but go right to the implementation.
If you think about it for a minute, the major question is this: how do we cross out
numbers?
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The following program uses an array type variable crossed_out for the list, where
any value crossed_out[i] is of type bool and represents the (changing) information
whether the number i has already been crossed out or not. Array indices always start
from 0, so in order to get to index n — 1, we need an array of length n. The program
runs Eratosthenes’ Sieve for n = 1, 000.

1 // Program: eratosthenes.C

2 // Calculate prime numbers in {2,...,999} using

3 // Eratosthenes’ sieve.

4

5 #include <iostream>

6

7 int main()

8 {

9 // definition and initialization: provides us with
10 // Booleans crossed_out[0],..., crossed_out[999]
11 bool crossed_out[1000];

12 for (unsigned int i = 0; i < 1000; ++i)

13 crossed_out[i] = false;

14

15 // computation and output

16 std::cout << "Prime numbers in {2,...,999}:\n";
17 for (unsigned int i = 2; i < 1000; ++1i)

18 if (!crossed_out[i]) {

19 // % is prime

20 std::cout << i << " ",

21 // cross out all proper multiples of 1%

22 for (unsigned int m = 2*i; m < 1000; m += i)
23 crossed_out[m] = true;

24 }

25 std::cout << "\n";

26

27 return O;

28 1}

Program 13: progs/eratosthenes.C

Definition. An array variable (or simply array) a with n > 0 elements of underlying
type T is defined through the following declaration.

l T a[expr]

Here, expr must be a constant expression of integral type whose value is n. For ex-
ample, literals like 1000, or arithmetic expressions over literals (like 1+1) are constant
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expressions; there are other constant expressions, but all of them have the property that
their value is known at compile time. This allows the compiler to figure out how much
memory the array variable needs.

The type of a is “T'[n]”, but we put this in double quotes here (only to omit them
later). The reason is that T'[n] is not the official name: we can’t write int[5] a, for
example, to declare an array a of type int [5].

The value range of T'[n] is T™, the set of all sequences (t;, ta,. .., t,) with all t; being
of type T. The underlying type T might for example be any fundamental type (like int,
bool, or double), and in this case, the values of the n array elements remain uninitialized
by the definition.

The fact that the array length must be known at compile time clearly limits the
usefulness of array variables. For example, this limitation does not allow us to write a
version of Eratosthenes’ sieve in which the number n is read from the input. But we will
shortly see how this restriction can be overcome—for the time being, let’s simply live
with it.

2.6.2 |Initializing arrays

The definition of an array with underlying fundamental type does not initialize the values
of the array elements. We can assign values to the elements afterwards (like we do it in
Program 13), but we can also provide the values directly, as in the following declaration
statement.

int a[5] = {4,3,5,2,1};

Since the number of array elements can be deduced from the length of the initializer
list, we can also write

int all = {4,3,5,2,1};

The declaration int a[] without any initialization is invalid, though, since it does not
fully determine the type of a. We say that a has incomplete type in this case.

2.6.3 Random access to elements

The most common and useful way of accessing and modifying the elements of an array
is by random access. If expr is of integral type and has value i, the lvalue

l alexpr]

is of the type underlying the array a and refers to the i-th element (counting from 0) of
a. The number i is called the index or subscript of the element. If n is the length of a,
the index i must satisfy 0 < i < n. The operator [] is called the subscript operator.

The somewhat strange declaration format of an array, with no explicit type name
appearing, is motivated by the subscript operator. Indeed, the declaration
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T alexpr]

can be read as “alexpr] is of type T”. In this sense, it is an indirect definition of a’s type.

Watch out! The C++ language offers no functionality for accessing the length
of an array (see Section 2.6.4 below for more on this). As the programmer, you
must remember the length yourself, and you are responsible for making sure
that a given array index i indeed satisfies 0 < i < n, where n is the length of the
array. Indices that are not in this range are called out of bound. Unless your
compiler offers specific debugging facilities, the usage of out-of-bound indices
in the subscript operator is not detected at runtime and leads to undefined
behavior of the program.

We have already discussed the term random access in connection with the computer’s
main memory (Section 1.2.3); random access means that every array element can be
accessed in the same uniform way, and with (almost) the same access time, no matter
what its index is. Evaluating the expression a[0] is as fast as evaluating a[10000].
In contrast, the thick pile of pending invoices, bank transfers and various other papers
on your desk does not support random access: the time to find an item is roughly
proportional to its depth within the pile.

In fact, random access in an array directly reduces to random access in the computer’s
main memory, since an array always occupies a contiguous set of memory cells, see

Figure 6.
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Figure 6: An array occupies a contiguous part of the main memory. Every element
wn turn occupies s memory cells, where s is the memory required to store
a single value of the underlying type T.

To access the element of index i in the array a, a simple computation with addresses
therefore suffices. If p is the address (position) where the first element of a “starts”, and
s is the number of memory cells that a single value of the underlying type T' occupies,
then the element of index 1i starts at the memory cell whose address is p +si, see Figure 7.

2.6.4 Arrays are not self-describing

Array types are exceptional in C++. The following code fragment illustrates this:

int alb] = {4,3,5,2,1}; // array of type int[5]
int b[5];
b = a; // error: we cannot assign to an array
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Figure 7: The array element of indez i starts at the address p + si.

We also cannot initialize an array from another array. Why is this? Arrays are a dead
hand from the programming language C, and the design of arrays in C is (from today’s
point of view) quite primitive. The main weakness is that the number of elements of
an array is not represented in the array’s value. C was designed to compete with
machine language in efficiency, and this didn’t leave room for luxury. An array variable
is merely represented by its address, defined as the address of the memory cell where the
first element (the one of index 0) starts. We also say that an array is not self-describing:
it does not “know” its own length.

Now we get to the assignment issue: there is no way of automatically copying all
elements of the array a into b, without knowing how many elements these are. But we
can of course do this manually via a simple loop, since we know the array lengths from
the declarations; early C programmers were not yet spoiled enough to complain about
such minor inconveniences. (On the other hand, this leaves ample room for bugs.)

When C++ was developed much later, one design goal was to have C as a subset. As
a consequence, arrays are still around in C++.

2.6.5 Iteration over a container

Let’s take a step back, forget about the technicalities of arrays for a moment, and go for
a bigger picture.

We have already indicated in the introduction to this section that the process of
iterating over a sequence of data is ubiquitous. Typically, the data are stored in some
container, and we need to perform a certain operation for all elements in the container.
In general, a container is an object that can store other objects (its elements), and that
offers some ways of accessing these elements. The only “hard” requirement here is that
a container must offer the possibility of iterating over all its elements. In this informal
sense, an array is indeed a container, since the random access functionality can be used
to iterate over the elements.
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Iteration by random access. Let’s get back to arrays. Iterating over an array of length n
can be done by random access like in lines 12-13 of Program 13. We have seen that the
random access functionality of arrays is internally based on address arithmetic. During
the iteration, the following sequence of addresses is computed: p,p +s,p+2s,...,p+
(n—1)s, where p and s have the usual meanings.

This requires one multiplication and one addition for any address except the first.
But if you think about it, the multiplication only comes in because we compute each
address from scratch, independently from the previous ones. In fact, the same set of
addresses could more efficiently and more naturally be computed by starting with p and
repeatedly adding s (“going to the next element”).

Using random access, we can simulate array iteration, but we are missing the opera-
tion of “going to the next element”; only this operation makes iteration over a container
natural and efficient. The following analogy illustrates the point: you can of course read
a book by starting with page 1, then closing the book, opening it again on pages 2 — 3,
closing it, opening it on pages 4 — 5, etc. But unless you're somewhat eccentric, you
probably prefer to just turn the pages in between.

Iteration by pointers.  Arrays offer natural and efficient iteration through pointers. Pointer
values can be thought of as actual addresses, and they allow operations like “adding s”
in order to go to the next element in the array. Here is how we could equivalently write
the iteration in lines 12-13 of Program 13 with pointers.

bool* begin = crossed_out; // pointer to first element
bool* end = crossed_out + 1000; // past-the-end pointer
// in the loop, pointer p successively points to all elements
for (bool* p = begin; p != end; ++p)

xp = false; // *p is the element pointed to by p

Admittedly, this looks more complicated at first sight than the random access version,
but we’ll explain what’s going on in detail in the next sections. In terms of Figure 7, we
have replaced iteration by index with iteration by address.

2.6.6 Pointer types and functionality
For any type T the corresponding pointer type is

IT*

We call T the underlying type of T* An expression of type T* is called a pointer (to
).
The value of a pointer to T is the address of an object of type T. We call this the
object pointed to by the pointer.

We can visualize a pointer p as an arrow pointing to a cell in the computer’s main
memory—the cell where the object pointed to by p starts, see Figure 8.
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Figure 8: A pointer to T represents the address of an object of type T in the com-
puter’s main memory.

Initialization, the assignment operator =, and the comparison operators == and !=
are defined for any pointer type T* The latter simply test whether the addresses in
question are the same or not.

Initialization and assignment copy the value (as usual), which in this case means to
copy an address; thus, if j points to some object, the assignment i = j has the effect
that i now also points to this object. The object itself is not copied. We remark that
pointer initialization and assignment require the types of both operands to be exactly
the same—implicit conversions don’t work. If you think about it, this is clear. Imagine
that the variable i is of type int*, and that you could write

doublex*x j =i

Since double objects usually require more memory cells than int objects, j would now
be a pointer to a double object that includes memory cells originally not belonging to i.
This can hardly be called a “conversion”. In fact, since we only copy an address, there
cannot be any physical conversion of the stored value, even if the memory requirements
of the two types happen to be the same.

The address operator. 'We can obtain a pointer to any given object by applying the unary
address operator to any lvalue that refers to the object. If the lvalue is of type T, then
the result is an rvalue of type T*. The syntax of an address operator call is

&lvalue

In the following code fragment we use the address operator to initialize a variable iptr
of type int* with the address of an object of type int named i.

int i = 5;

int* iptr = &i; // iptr initialized with the address of 1

The dereference operator. From a pointer, we can get back to the object pointed to
through dereferencing or indirection. The unary dereference operator » applied to an
rvalue of pointer type yields an lvalue referring to the object pointed to. If the rvalue is
of type T*, then the result is of type T. The syntax of a dereference operator call is
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xrvalue

Following up on our previous code fragment, we can therefore write

int i = 5;
int* iptr = &i; // iptr initialized with the address of %
int j = *iptr; // j ==

The naming scheme of pointer types is motivated by the dereference operator. The
declaration

lT*p

can also be read (and in fact legally be written; we don't do this, though) as

lT*p

The second version indirectly defines the type of p by saying that *p is of type T. This
is the same kind of indirect definition that we already know from array declarations.
Figure 9 illustrates address and dereference operator.

pointer (given as rvalue) _

= N
7 N
7 \
! \
1 & * \
\ 1
\ 1
\ /
. . /
AN object (given as lvalue) -
S o <t

Figure 9: The address operator (left) and its inverse, the dereference operator (right)

The null pointer. For any pointer type there is a value distinguishable from any other
pointer value. This value is called the null pointer value. The integer value O can be
converted to any pointer type. The value after conversion is the null pointer value. In
the declaration int* iptr = 0, for example, the variable iptr gets initialized with the
null pointer value. We also say that iptr is a null pointer. The null pointer value must
not be dereferenced, since it does not correspond to any existing address.

Using the null pointer value is the safe way of indicating that there is no object (yet)
to point to. The alternative of leaving the pointer uninitialized is bad: there is no way
of testing whether a pointer that is not a null pointer holds the address of a legitimate
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object, or whether it holds some “random” address resulting from leaving the pointer
uninitialized.

In the latter case, dereferencing the pointer usually crashes the program. Consider
this code:

int* iptr; // uninitialized pointer
int j = *xiptr; // trouble!

After its declaration, the pointer iptr has undefined value, which in practice means that
it may correspond to an arbitrary address in memory; dereferencing it means to access
the memory content at this address. In general, this address will not belong to the part
of memory to which the program has access; the operating system will then deny access
to it and terminate the program with a segmentation fault.

2.6.7 Array-to-pointer conversion

Any array of type T'n] can implicitly be converted to type T*. The resulting value is
the address of the first element of the array. For example, we can write

int al[5];
int* begin = a; // begin points to al[0]

The declaration
int*x begin = &al[0]; // address of the first element

is equivalent as far as the resulting value of begin is concerned, but there is a subtle
difference: the latter declaration evaluates a[0], while the former does not.

The pointer-style replacement code for the loop in lines 12-12 of Program 13 that we
have presented at the end of Section 2.6.5 makes use of array-to-pointer conversion in
the first line:

bool* begin = crossed_out; // pointer to first element

The array-to-pointer conversion is purely conceptual; on the machine side, nothing
happens. For this, we recall from our earlier discussion in Section 2.6.4 that in C and
therefore also in C++, an array “is” simply the address of its first element.

Array-to-pointer conversion automatically takes place when an array appears in an
expression.?? Bjarne Stroustrup, the designer of C++, illustrates this by saying that
the name of an array converts to a pointer to its first element at the slightest
provocation. In still other words, there are no operations on arrays: everything that we
conceptually do with an array is in reality done with a pointer; this in particular applies
to the random access operation, see the paragraph called “Pointer subscripting, or the
truth about random access” in the next section.

227 notable exception is the case where an array appears as the left operand of an assignment. This
does not trigger array-to-pointer conversion but an error message saying that arrays can’t be assigned to.
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2.6.8 Pointer arithmetic

In order to understand why the code fragment

bool* begin = crossed_out; // pointer to first element
bool* end = crossed_out + 1000; // past-the-end pointer
// in the loop, pointer p successively points to all elements
for (bool* p = begin; p != end; ++p)

xp = false; // *p is the element pointed to by p
indeed sets all elements of the array crossed_out to false, we have to understand pointer
arithmetic, the art of computing with addresses. We deliberately call this an “art”,
since pointer arithmetic comes with a lot of pitfalls, but without a safety net. On the
other hand, the authors feel that there is also a certain beauty in the minimalism of
pointer arithmetic. It’s like driving an oldtimer: it’s loud, it’s difficult to steer, seats
are uncomfortable, and there’s no heating. But the heck with it! The oldtimer looks so
much better than a modern car. Nevertheless, after driving the oldtimer for a while, it
will probably turn out that beauty is not enough, and that safety and usability are more
important factors in the long run.

Adding integers to pointers. The binary addition operators +, - are defined for left operands
of any pointer type T* and right operands of any integral type. Recall that if an ar-
ray is provided as the left operand, it will implicitly be converted to a pointer using
array-to-pointer conversion.

For the behavior of + to be defined, there must be an array of some length n, such
that the left operand ptr is a pointer to the element of some index k,0 < k < mn, in the
array. The case k = n is allowed and corresponds to the situation where ptr is a pointer
one past the last element of the array (we call this a past-the-end pointer; note that
such a pointer must not be dereferenced).

If the second operand expr has some value i such that 0 < k+1i < n, then

l ptr + expr

is a pointer to the (k + i)-th element of the same array. Informally, we get a pointer
that has been moved “i elements to the right” (which actually means to the left if i is
negative).

Again, if k +1 = n, we get a past-the-end pointer. Values of i such that k + 1 is not
between 0 and n lead to undefined behavior.

Let us repeat the point that we have made before in connection with random access
in Section 2.6.3: by default, there are absolutely no checks that the above requirements
indeed hold, and it is entirely your responsibility to make sure that this is the case.
Failure to do so will result in program crashes, strange behavior of the program, or
(probably the worst scenario) seemingly normal behavior, but with the potential of
turning into strange behavior at any time, or on any other machine.

Therefore, let us summarize the requirements once more:



2.6. ARRAYS AND POINTERS 133
e ptr must point to the element of index k in some array of length n, where 0 < k < n,
and

e expr must have some value i such that 0 <k +1<n.

Binary subtraction is similar. If expr has value i such that 0 < k —1i < n, then

ptr — expr

yields a pointer to the array element of index k — i.

The assignment versions += and -= of the two operators, and the unary increment and
decrement operators ++ and -- can be used with left operands of pointer type as well,
with the usual meaning. Since precedences and associativities are tied to the operator
symbols, they are as in Table 1 on page 42.

Now we can understand the second line of the above code fragment:

bool* end = crossed_out + 1000; // pointer after last element

First, the array crossed_out is converted to a pointer to its first element (the one
of index 0). Since the array has 1,000 elements, adding the integer 1,000 yields a past-
the-end pointer end for the array. The subsequent loop
for (bool* p = begin; p != end; ++p)

*p = false; // *p is the element pointed to by p
is clear now as well: starting with a pointer p to the first element (p = begin), the
element pointed to is set to false (xp = false). Then we increment p so that it points
to the next element (++p). We repeat this as long as p is different from the past-the-end
pointer named end.

Pointer comparison. We have already discussed the relational operators == and != that
simply test whether the two pointers in question point to the same object. But we can
also compare two pointers using the operators <, <=, >, and >=. Again, precedences and
associativities of all relational operators are as in Table 2 on page 63.

For the result to be specified, there must be an array of some length n, such that the
left operand ptrl is a pointer to the element of some index k1,0 < ky < n in the array,
and the second operand ptr2 is a pointer to the element of some index k;,0 < k; <nin
the same array. Again, k; = n and k, = n are allowed and correspond to the past-the-end
case.

Given this, the result of the pointer comparison is determined by the integer com-
parison of k; and k,. In other words (and quite intuitively), the pointer to the element
that comes first in the array is the smaller one.

In our code fragment, the comparison p < end therefore yields true as long as p is
not a past-the-end pointer; equivalently, as long as p points to an actual array element.
The loop therefore does what we want: it sets all array elements to false.

Comparing two pointers that do not meet the above requirements leads to unspecified
results in the four operators <, <=, >, and >=.
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Pointer subtraction. There is one more arithmetic operation on pointers. Assume that
ptrl is a pointer to the element of some index k4,0 < k; < n in some array of length
n, and the second operand ptr2 is a pointer to the element of some index k,,0 < k; <
n in the same array (past-the-end pointers allowed). Then the result of the pointer
subtraction

ptrl — ptr2

is the integer k; — k,. Thus, pointer subtraction tells us “how far apart” the two array
elements are. The behavior of pointer subtraction is undefined if ptrl and ptr2 are not
pointers to elements in (or past-the-end pointers of) the same array.

Pointer subtraction (which employs the binary subtraction operator, see Table 1 on
page 42 for its specifics) does not occur in the code fragment from the beginning of this
section. A typical use is to determine the number of elements in an array that is given
by a pointer to its first element and a past-the-end pointer.

Pointer subscripting, or the truth about random access. In reality, the subscript operator []
as introduced in Section 2.6.3 does not operate on arrays, but on pointers. Invoking this
operator on an array constructs an expression and therefore triggers an array-to-pointer
conversion.

Given a pointer ptr and an expression expr of integral type, the expression

l ptriexpr]

is equivalent (also in its requirements on ptr and expr) to
*(ptr + expr)

If expr has value 1, the latter expression yields the array element i places to the right of

the one pointed to by ptr. In particular, if ptr results from an array-to-pointer conversion,

this agrees with the semantics of random access for arrays as introduced in Section 2.6.3.
Table 4 summarizes the new pointer-specific binary operators.

| Description | Operator | Arity | Prec. | Assoc.
subscript [ 2 17 | left
dereference * 1 16 | right
address & 1 16 | right

Table 4: Precedences and associativities of pointer operators. The subscript operator
ezpects rvalues as operands and returns an lvalue. The dereference operator
ezxpects an rvalue and returns an lvalue, while the address operator expects
an lvalue and returns an rvalue.
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What have we gained with pointers? So far it seems that the only use of pointers is to
make iteration through an array a little more efficient than iteration by index. But
unless we are in the realm of extremely time-critical loops, the savings are marginal. For
the sake of readability, we therefore often still use iteration by index. So what is the real
justification for the pointer concept?

There are actually two justifications, and one of them will be discussed right away
in the next section: pointers are indispensable for getting “practical” arrays with length
not known at compile time.

The second justification is not yet around the corner, so we will only briefly touch
it here. Arrays are by far not the only containers for sets of data. When we implement
data processing algorithms, we should therefore make sure that they work not only for
arrays.

For example, finding a container element with a given property (movie theater that
plays your favorite movie) should be possible for any containers that offers the func-
tionality of iterating over its elements. The only uniformity we need is in the iteration
process itself.

Any data-processing algorithm of the C++ standard library (we will see some of
them later) works in this way: it expects the underlying container to offer iterators
conforming to some well-defined iterator concept. The specifics of the container itself
are irrelevant for the algorithm.

Here is where pointers come in: they are the iterators offered by arrays. Therefore,
even if we don’t use pointers in our own code, we have to know about them in order to
be able to apply standard library algorithms to arrays.

2.6.9 Dynamic memory allocation

Let us go back to Program 13 now. Its main drawback is that the number n is hardwired
as 1,000 in this program, just because the length of an array has to be known at compile
time.

At least in this respect, arrays are nothing special, though. All types that we have
met earlier (int, unsigned int, and bool) have the property that a single object of the
type occupies a fixed amount of memory known to the compiler (for example, 32 bits for
an int object on many platforms). With arrays, an obvious need arises to circumvent
this restriction.

In C++, arrays whose length is determined at runtime can be obtained through
dynamic memory allocation. Through such an allocation, we create an object with
dynamic storage duration.

Objects that we have seen so far were all tied to variables, in which case memory
gets assigned to them (and is freed again) at predetermined points during program
execution (automatic and static storage duration, Section 2.4.3). Objects of dynamic
storage duration are not tied to variables, and they may “start to live” (get memory
assigned to them) and “die” (get their memory freed) at any point during program
execution. The programmer can determine these points via new and delete expressions.
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The program has some (typically quite large) region of the computer’s main memory
available to store dynamically allocated objects. This region is called the heap. It is
initially unused, but when an object is dynamically allocated, it is being stored on the
heap, so that the memory actually used by the program grows.

Here is how this works for Eratosthenes’ Sieve. Remember that we want the list of
prime numbers between 2 and n — 1. The following variant reads the number n from
standard input and dynamically allocates an array of length n. The remainder of the
program is as before, except that we explicitly have to free the dynamically allocated
storage in the end.

1 // Program: eratosthenes2.C

2 // Calculate prime numbers in {2,...,n-1} using

3 // Eratosthenes’ sieve.

4

5 #include <iostream>

6

7 int main()

8 {

9 // input

10 std::cout << "Compute prime numbers in {2,...,n-1} for n =7 ";
11 unsigned int n;

12 std::cin >> n;

13

14 // definition and initialization: provides us with

15 // Booleans crossed_out[0],..., crossed_out[n-1]

16 bool* crossed_out = new booll[n]; // dynamic allocation
17 for (unsigned int i = 0; i < n; ++1i)

18 crossed_out[i] = false;

19

20 // computation and output

21 std::cout << "Prime numbers in {2,...," << n-1 << "}:\n";
22 for (unsigned int i = 2; i < n; ++i)

23 if (!'crossed_out[i]) {

24 // % is prime

25 std::cout << i << " ",

26 // cross out all proper multiples of 1%

27 for (unsigned int m = 2%i; m < n; m += i)

28 crossed_out[m] = true;

29 }

30 std::cout << "\n";

31

32 delete[] crossed_out; // free dynamic memory
33

34 return O;

35 }
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Program 14: progs/eratosthenes2.C

Note that the variable crossed_out is now a pointer rather than an array; after the
new declaration, it points to the first element of a dynamically allocated array of length
n.

The new expression. For any type T, a new expression can come in any of the following
three variants.

138 CHAPTER 2. FOUNDATIONS

storage duration implies that dynamically allocated objects live until the program ter-
minates, unless they are explicitly freed. Dynamically allocated memory is more flexible
than static memory, but in return it also involves some administrative effort.

The delete expressions take care of freeing memory. They come in two variants.

delete expr
delete[] expr

new T
new T(...)
new T[expr]

In all cases, the expression returns an rvalue of type T*. Its value is the address
of an object of type T that has been dynamically allocated on the heap. The object
itself is anonymous, but we usually store the resulting address under a variable name.
In Program 14, we call it crossed_out.

In the first and second variant, the effect of the new expression is to dynamically
allocate a single object of type T on the heap. Variant 1 leaves the object uninitialized if
T is a fundamental type, while variant 2 initializes the new object with whatever appears
in parentheses. For example, the following declarations initialize the variables i and j,
both of type int*, with the addresses of two new objects of type int.

int* i = new int; // *i s undefined
int* j = new int(6); // *j is 6

Right now, if we wanted two such objects of type int, we’d rather use variables with
automatic storage duration and write
int i; // i is undefined
int j = 6; // § is 6

More interesting for us is the third variant. If expr has integer value n > 0, the effect
of the new expression is to dynamically allocate an array of length n with underlying
type T on the heap. The return value is the address of the first element. This is what
we see in line 16 of Program 14.

As usual, the n array elements remain uninitialized if T' is a fundamental type.

The delete expression. Dynamically allocated memory that is no longer needed should
be freed. In C++, the programmer decides at which point this is the case. ?* Dynamic

23There are programming languages (Java, for example) that automatically detect and free unused
memory on the heap. This automatic process is called garbage collection. It is generally more user-
friendly than the manual deletion process in C++, but requires a more sophisticated implementation. In
any case, you are free to implement garbage collection also in C++.

In both variants, expr may be a null pointer, in which case the delete expression has
no effect.

Otherwise, in the first variant, expr must be a pointer to a single object that has pre-
viously been dynamically allocated with the first or second variant of the new expression.
The effect is to make the corresponding memory available again for subsequent dynamic
allocations on the heap.

For example, at a point in the program where the two int objects dynamically allo-
cated through

int* i = new int; // *i is undefined
int* j = new int(6); // *j is 6

are no longer needed, we would write

delete j;
delete 1ij;

The order of deletion does not matter here, but many programmers consider it logical
to delete pointers in the inverse order of dynamic allocation: If you need to undo two
steps, you first undo the second step.

In the second variant of the delete expression, expr must be a pointer to the first
element of an array that has previously been dynamically allocated with the third variant
of the new expression. The whole memory occupied by the array is put back on the heap
for reuse.?* This happens in line 32 of Program 14.

If the plain delete is applied to a non-null pointer that does not point to a dynam-
ically allocated single object, the behavior is undefined. The same is true if one tries
to delete[] an array where there is only a single object. As always with pointers, the
C++ language does not offer any means of detecting such errors.

Memory leaks. Although all memory allocated by a program is automatically freed when
the program terminates normally, it is very bad practice to rely on this fact for freeing
dynamically allocated memory. If a program does not explicitly free all dynamically
allocated memory it is said to have a memory leak. Such leaks are often a sign of
bad coding. They usually have no immediate consequences, but without freeing unused

24This implies that the length of a dynamically allocated array is actually stored somewhere with the
heap; still, we can’t access this length from the program.
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storage, a program running for a long time (think of operating system routines) may at
some point simply exhaust the available heap storage.
Therefore, we have the following guideline.

Dynamic Storage Guideline:
new and delete expressions should always come in matching pairs.

2.6.10 Arrays of characters

Sequences of characters enclosed in double quotes like in
std::cout << "Prime numbers in {2,...,999}:\n";

are called string literals.?®

So far we have used string literals only within output expressions, but we can work
with them in other contexts as well. Most notably, a string literal can be used to initialize
an array of characters. Characters are the building blocks of text as we know it. In
C++, they are modeled by the fundamental type char that we briefly discuss next.

The type char. The fundamental type char represents characters. Characters include
the letters a through z (along with their capital versions A through Z), the digits 0
through 9, as well as numerous other special characters like % or $. The line

char ¢ = ’a’;

defines a variable c of type char and value ’a’, representing the letter a. The expression
’a’ is a literal of type char. The quotes around the actual character symbol are necessary
in order to distinguish the literal *a’ from the identifier a.

Formally, the type char is an integral type: it has the same operators as the types
int or unsigned int, and the C++ standard even postulates a promotion from char to
int or unsigned int. It is nmot specified, though, to which integer the character ’a’,
say, will be promoted. Under the widely used ASCII code (American Standard Code for
Information Interchange), it is the integer 97.

This setting may not seem very useful, and indeed it makes little sense to divide one
character by another. On the other hand, we can for example print the alphabet through
one simple loop (assuming ASCII encoding). Execution of the for-loop

for (char ¢ = ’a’; ¢ <= ’z’; ++c)
std::cout << c;

writes the character sequence

abcdefghijklmnopqrstuvwxyz

25Unlike all other literals, string literals are lvalues, but the effect of trying to modify them is undefined;
luckily, we won’t need these “interesting” facts.
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to standard output. Given this, you may think that the line
std::cout << ’a’ + 1;

prints ’b’, but it doesn’t. Since the operands of the composite expression ’a’+1 are
of different types, the left operand of type char will automatically be promoted to the
more general type int of the right operand. Therefore, the type of the expression ’a’+1
is int, and its value is 98 (assuming ASCII encoding); and that’s what gets printed. If
you want ’b’ to be printed, you must use the explicit conversion char(’a’+1).

The category of special characters also includes control characters that do something
when printed. These are written with a leading backslash, and the most important
control character for us is *\n’, which causes a line break.

On most platforms, a char value occupies 8 bits of memory; whether the value range
correspond to the set of integers {—128,...,127} (the signed case) or the set {0, ..., 255}
(the unsigned case) is implementation defined. Since all ASCII characters have integer
values in {0, ..., 127}, they can be represented in both cases.

From characters to text. A text is simply a sequence of characters and can be modeled in
C++ through an array with underlying type char. For example, the declaration

char text[] = {’b’, ’0o’, ’0’, "1’}
defines an array of length 4 that represents the text bool
Alternatively (and more conveniently), we can write

char text[] = "bool"

This, however, is not equivalent to the former declaration. When an array of characters
is initialized with a string literal, the terminating zero character >\0’ (of integer value
0) is automatically appended to the array. This character does not correspond to any
printable character. After the latter declaration, the array text therefore has length 5.
The first four elements are ’b’, ’0’, ’0’, and ’1’, and the fifth element is the zero
character *\0’.

We call such an array zero-terminated. Unlike normal arrays, zero-terminated arrays
“know” their length. To get this length, we simply have to iterate over the array and
count the number of elements before the terminating >\0’.

Here is an application of (arrays of) characters. String matching is the problem of
finding the first or all occurrences of a given search string (usually short) in a given text
(usually long).

The obvious solution is the following: assuming that the search string has length m,
we compare it characterwise with the elements 1,2, ..., m of the text. If a mismatch is
found for some element, we stop and next compare the search string with the elements
2,3,...,m+1 of the text, and so on. Sets of m consecutive elements i,i+1,...,i+m—1
in the text are called a window.

This algorithm is fast as long as the search string is short, but it may become ineffi-
cient for long search strings (see Exercise 62). There is a more sophisticated algorithm
(the Knuth-Morris-Pratt algorithm) that is always fast.
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The following Program 15 implements the obvious algorithm. It maintains two arrays
of characters, one for the search string, and one for the current window. We impose a
cyclic order on the window (the first element directly follows the last one); this makes
it easy to shift the window one place, by simply replacing element i of the text with
element 1+ m (and at the same time advancing the logical first position of the window
by one).

1 // Program: string_matching.C

2 // find the first occurrence of a fiwed string within the
3 // input text, and output the text so far

4

5 #include<iostream>

6

7 int main ()

8 {

9 // search string

10 char s[] = "bool";

11

12 // determine search string length m

13 unsigned int m = 0;

14 for (char*x p = s; *p != ’\0’; ++p) ++m;

15

16 // cyclic tezxt window of size m

17 char* t = new char([m];

18

19 unsigned int w = 0; // number of characters read so far
20 unsigned int i = 0; // indez where t logically starts
21

22 // find pattern in the texzt being read from std::cin
23 std::cin >> std::noskipws; // don’t skip whitespaces!
24

25 for (unsigned int j = 0; j < m;)

26 // compare search string with window at j-th element
27 if (w <m || s[j] '= t[(i+j)%m])

28 // input text still too short, or mismatch:

29 // advance window by replacing first character

30 if (std::cin >> t[i]) {

31 std::cout << t[il;

32 ++w; // one more character read

33 j =0; // restart with first characters
34 i = (i+1)%m; // of string and window

35 } else break; // mo more characters in the input
36 else ++j; // match: go to mnexzt character

37

38 std::cout << "\n";
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39 delete[] t;
40 return O;
41

Program 15: progs/string_matching.C

When we apply the program to the text of the file eratosthenes.C, the program
outputs Program 13 up to the first occurrence of the string "bool":

// Program: eratosthenes.C
// Calculate prime numbers in {2,...,999} using
// Eratosthenes’ sieve.

#include <iostream>

int main()

{
// definition and initialization: provides us with
// Booleans crossed_out[0],..., crossed_out[999]
bool

A few comments need to be made with respect to the handling of standard input
here. The program reads the text character by character from std::cin, until this
stream becomes “empty”. To test this, we use the fact that stream values can implicitly
be converted to bool, with the result being true as long as there was no attempt at
reading past the end of the stream. Since the value of std::cin >> t[i] is the stream
after removal of one character, the conversion to bool exactly tells us whether there still
was a character in the stream, or not.

Most conveniently, the program is run by redirecting standard input to a file contain-
ing the text. In this case, the stream std::cin will become empty exactly at the end of
the file. The line

std::cin >> std::noskipws; // don’t skip whitespaces!
is necessary to tell the stream that whitespaces (blanks, newlines, etc.) should not
be ignored (by default, they are). This allows us to search for strings that contain

whitespaces, and it allows us to output the text (up to the first occurrence of the search
string) in its original layout.

2.6.11 Multidimensional arrays

In C++, we can have arrays of arrays. For example, the declaration

int a[2][3]

declares a to be an array of length 2 whose elements are arrays of length 3 with underlying
type int. We also say that a is a multidimensional array (in this case of dimensions

2 and 3). The type of a is “int [2] [3]”, and the underlying type is int [3]. In general,
the declaration
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l T alexprl]...[exprk]|

defines an array a of length n; (value of exprl) whose elements are arrays of length
n, (value of expr2) whose elements are...you get the picture. The values n,,...,ng
are called the dimensions of the array, and the expressions exprl,...,exprk must be
constant expressions of integral type and positive value.

Random access in multidimensional arrays works as expected: a[i] is the element
of index 1, and this element is an array itself. Consequently, a[i] [j] is the element of
index j in the array a[i], and so on.

Although we usually think of multidimensional arrays as tables or matrices, the mem-
ory layout is “flat” like for one-dimensional arrays. For example, the twodimensional
array declared through int a[2] [3] occupies a contiguous part of the memory, with
space for 6 =2 x 3 objects of type int, see Figure 10.

afolfo] | afol[1] | afol[2] af1]fo] | al11[1] af11[2]
e —

afo] a[1]

Figure 10: Memory layout of a twodimensional array

Multidimensional arrays can be initialized in a way similar to onedimensional arrays;
the value for the first (and only the first) dimension may be omitted:

int a[l[3] = { {2,4,6}, {1,3,5} };

This defines an array of type int[2] [3] where {2,4,6} is used to initialize the element
al0], and {1,3,5} is used for a[1].

Dynamic allocation of multidimensional arrays. The required dimensions of a multidimen-
sional array may not be known at compile time in which case dynamic allocation is called
for. Let us start with the case where all dimensions but the first are known at compile
time. If expr has value n > 0, a pointer to a dynamically allocated array of length n
with underlying type T[n,]...[n] is obtained from a new expression

l new T{expr]|[expr2]... exprk]

where expri has value n;, i = 1,...,k. All dimensions but the first must be constant
expressions. If you think about it for a minute, this is not surprising. For example, in
order to generate machine language code for random access operations on the dynamically
allocated array, the compiler must know how many memory cells a single element of the
underlying type T'[n,]...[ny] occupies (see Section 2.6.3). But this is only possible if the
values n,,...,ny are known at compile time.
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Pointers to arrays. If we want to use the above new expression to initialize a pointer
variable (with the address of the first element of the multidimensional array), we need
the type “pointer to T[ny]...[ny]”. As you may suspect, we informally call this type
“T'[ng)...[ni]*”, but we can’t write it like that in C++, since T'[n;]...[ny] is not a type
name. Again, we have to resort to an indirect definition of the desired pointer variable
p, as in the following code fragment.

int n = 2;

int (*p)[3] = new int[n][3]; // type of *p: int[3] <=> p: int [3]*

The parentheses are necessary here, since int *p[3] (which is the same as int* p[3])
declares p to be an array of pointers to int (see also next paragraph). C++ syntax is
bittersweet.

Arrays of pointers. If you're asking for a multidimensional array with non-constant di-
mensions among n,, ..., Ny, the official answer is: there is none. But under the counter,
you can buy a very good imitation.

One first solution that suggests itself when you reconsider the flat memory layout
of multidimensional arrays is this: you dynamically allocate a onedimensional array of
length n =ny X n, x « -+ X ny and artificially partition it into subarrays by doing some
juggling with indices.

Let us discuss the twodimensional case only to avoid lengthy formulae. A twodimen-
sional array with dimensions n and m can be simulated by a onedimensional array of
length nm. The element with logical indices i € {0,1,...,n—1}and j € {0,1,...,m—1}
appears at index mi + j in the onedimensional array. Vice versa, the element of index {
in the onedimensional array has logical indices i = {divm and j = {mod m. This works
because the function

(i,j) —» mi+j

bijectively maps the set of logical indices (i,j) to the set of numbers {0, 1,...,nm — 1}
Intuitively, this mapping flattens the imaginary table of n rows and m columns by simply
putting one row after another. As you can see from Figure 10, this is exactly what
the compiler is implicitly doing for multidimensional arrays with constant dimensions
My, Ny

Doing it explicitly for non-constant dimensions is only a workaround, though, since
we lose the intuitive notation a[i] [j]; moreover, this workaround becomes even more
cumbersome with higherdimensional arrays.

A better solution that keeps the notation a[i] [j] and that smoothly extends to
higher dimensions is the following (again, we only discuss the case of a twodimensional
array with dimensions n and m): you first dynamically allocate one array of n point-
ers, and then you let every single pointer point to the first element of an individual,
dynamically allocated array of length m. The following code fragment demonstrates
this.
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// a points to the first element of an array of n pointers to int
int** a = new int*[n];
for (int i = 0; i < n; ++i)

// ali] points to the first element of an array of m int’s

al[i] = new int[m];

The type int#** is “pointer to pointer to int”. a[i] is therefore a pointer to int (see
the paragraph on pointer subscripting in Section 2.6.8), and a[i] [j] is an lvalue of type
int, just like in a “regular” twodimensional array.

The memory layout is different, though: Figure 10 is replaced by Figure 11. This
means, the twodimensional array is patched up from a set of n onedimensional arrays,
but these n arrays are not necessarily consecutively arranged in memory. In fact, the
n arrays may even have different lengths. This is useful for example when you want to
store a lower-triangular matrix; in this case, it suffices if the row of index i has length
i+1.

a[o0] al1] ‘ al11[0] [a[1][1] |al1][2] | afo] [0] | af0][1]|a[0] [2] |

Figure 11: Memory layout of a twodimensional array realized by an array of pointers

Computing shortest paths. Let us conclude this section with an interesting application of
(multidimensional) arrays. Imagine a rectangular factory floor, subdivided into square
cells. Some of the cells are blocked with obstacles (these could for example be machines
or cupboards, but let us abstractly call them “walls”). A robot is initially located at
some cell S (the source), and the goal is to move the robot to some other cell T (the
target). At any time, the robot can make one step from its current cell to any of the
four adjacent cells, but for obvious reasons it may only use cells that are empty.

Given this setup, we want to find a shortest possible robot path from S to T (or find
out that no such path exists). Here, the length of a robot path is the number of steps
taken by the robot during its motion from S to T (the initial cell S does not count; in
particular, it takes O steps to reach S from S). Figure 12 (left) shows an example with
8 x 12 cells.

In this example, a little thinking reveals that there are essentially two different pos-
sibilities for the robot to reach T: it can pass below the component of walls adjacent to
S, or above. It turns out that passing above is faster, and a resulting shortest path (of
length 21) is depicted in Figure 12 (right). Note that in general there is not a unique
shortest path. In our example, the final right turn of the path could also have been made
one or two cells further down.
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Figure 12: Left: What is a shortest robot path from S to T? Right: This one!

We want to write a program that finds a shortest robot path, given the dimensions
n (number of rows) and m (number of columns) of the factory floor, the coordinates
of source and target, and the walls. How can this be done? Before reading further, we
encourage you to think about this problem for a while. Please note that the brute-force
approach of trying all possible paths and selecting the shortest one is not an option,
since the number of such paths is simply too large already for moderate floor dimensions.
(Besides, how do you even generate all these paths?)

Here is an approach based on dynamic programming. This general technique is
applicable to problems whose solutions can quickly be obtained from the solutions to
smaller subproblems of the same structure. The art in dynamic programming is to find
the “right” subproblems, and this may require a more or less far-reaching generalization
of the original problem.

Once we have identified suitable subproblems, we solve all of them in turn, from
the smaller to the larger ones, and memorize the solutions. That way, we have all the
information that we need in order to quickly compute the solution to a given subproblem
from the solutions of the (already solved) smaller subproblems.

In our case, we generalize the problem as follows: for all empty cells C on the floor,
compute the length of a shortest path from S to C (where the value is oo if no such path
exists). We claim that this also solves our original problem of computing a shortest path
from S to T: Assume that the length of a shortest path from S to T is £ < co (otherwise
we know right away that there is no path at all). We also say that T is reachable from
S in { steps.

Now if T # S, there must be a cell adjacent to T that is reachable from S in £ — 1
steps, and adjacent to this a cell reachable in { — 2 steps etc. Following such a chain of
cells until we get to S gives us a path of length { which is shortest possible.

Let us rephrase the generalized problem: we want to label any empty cell C with
a nonnegative integer (possibly co) that indicates the length of a shortest path from S
to C. Here are the subproblems to which we plan to reduce this: for a given integer
i > 0, label all the cells that are reachable from S in at most i steps. For i = nm —1
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(actually, for some smaller value), this labels all cells that are reachable from S at all,
since a shortest path will never enter any cell twice.

Here is the reduction from larger to smaller subproblems: assume that we have already
solved the subproblem for i — 1, i.e. we have labeled all cells that are reachable from S
within i — 1 or less steps. In order to solve the subproblem for i, we still need to label
the cells that are reachable in i steps (but not less). But this is simple, since these cells
are exactly the unlabeled ones adjacent to cells with label i — 1.

Figure 13 illustrates how the frontier of labeled cells grows in this process, for i =
0,1,2,3.

o = 10 Bn
Eferier 1 S
T T
i=0 i=1
SR A % 3 e %
2[1]o0 1]0 B4
2 i 3121 R
2 302
3
T T
i=2 i=3

Figure 13: The solution to subproblem i labels all cells C reachable from S within at
most 1 steps with the length of the shortest path from S to C.

Continuing in this fashion, we finally arrive at the situation depicted in Figure 14:
all empty cells have been labeled (and are in fact reachable from S in this example). To
find a shortest path from S to T, we start from T (which has label 21) and follow any
path of decreasing labels (20,19, ...) until we finally reach S.
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Figure 14: The solution to subproblem i = 23 solves the generalized problem and
the original problem (a shortest path is obtained by starting from T and
following a path of decreasing labels).

The shortest path program. Let’s get to the C++ implementation of the above method.
We represent the floor by a dynamically allocated twodimensional array floor with
dimensions n +2 and m+ 2 and entries of type int. (Formally, floor is a pointer to the
first element of an array of n + 2 pointers to int, but we still call this a twodimensional
array). These dimensions leave space for extra walls surrounding the floor. Such extra
walls allow us to get rid of special cases: floor cells having less than four adjacent cells.
In general, an artificial data item that guards the actual data against special cases is
called a sentinel.

The heart of the program (which appears as Program 16 below) is a loop that com-
putes the solution to subproblem i from the solution to subproblem i—1, fori=1,2,....
The solution to subproblem O is readily available: we set the floor entry corresponding
to S to 0, and the entries corresponding to the empty cells to —1 (this is meant to indicate
that the cell has not been labeled yet). Walls are always labeled with the integer —2.

In iteration i of the loop, we simply go through all the yet unlabeled cells and label
exactly the ones with 1 that have an adjacent cell with label i — 1. The loop terminates
as soon as no progress is made anymore, meaning that no new cell could be labeled in
the current iteration. Here is the code.

// main loop: find and label cells reachable in i=1,2,... steps
for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+1; ++r)
for (int c=1; c<m+1; ++c) {

if (floor[r][c]l != -1) continue; // wall, or labeled before
// is any neighbor reachable in i-1 steps?
if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 |
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floor[r]llc-1] == i-1 || floor[r][c+1] == i-1 ) {
floor[r]l[c] = i; // label cell with %
progress = true;
}
}
if (!progress) break;

}

The other parts of the main function are more or less straightforward. Initially, we
read the dimensions from standard input and do the dynamic allocation.

// read floor dimensions
int n; std::cin >> n; // number of rows
int m; std::cin >> m; // number of columns

// dynamically allocate twodimensional array of dimensions
// (n+2) = (m+2) to hold the floor plus extra walls around
int** floor = new int*[n+2];
for (int r=0; r<n+2; ++r)

floor[r] = new int[m+2];

Next, we read the floor plan from standard input. We assume that it is given rowwise
as a sequence of nm characters, where ’S’ and ’T’ stand for source and target, ’X’
represents a wall, and -’ an empty cell. The input file for our initial example from
Figure 12 would then look as in Figure 15

8 12

______ X-===-
-XXX--X-----
——8X-mm—————
---X---XXX--
———emmX———-—
———X-——X-———
---X---X-T--
PR, X----

Figure 15: Input for Program 16 corresponding to the example of Figure 12

If other characters are found in the input (or if the input prematurely becomes empty),
we generate empty cells. While reading the floor plan, we put the appropriate integers
into the entries of floor, and we remember the target position for later.

// target coordinates, set upon reading °’T’
int tr = 0;
int tc = 0;
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// assign initial floor walues from input:

// source: '8 => 0 (source reached in 0 steps)

// target: T => -1 (number of steps still unknown)
// wall: X0 => -2

// empty cell: ’-° -> -1 (number of steps still unknown)

for (int r=1; r<n+1l; ++r)
for (int c=1; c<m+1; ++c) {
char entry = ’-7;
std::cin >> entry;

if (entry == ’8’) floor[rll[c] = 0;
else if (entry == ’T’) floor[tr = rlltc = c] = -1;
else if (entry == ’X’) floorl[r]lc] = -2;
else if (entry == ’-’) floor[rllc]l = -1;

}
Now we add the surrounding walls as sentinels.

// add surrounding walls
for (int r=0; r<n+2; ++r)

floor[r][0] = floor[r]l[m+1] = -2;
for (int c=0; c<m+2; ++c)
floor [0][c] = floor[n+1][c] = -2;

Next comes the main loop that we have already discussed above. It labels all reachable
cells, so that we obtain a labeling as in Figure 14. From this labeling, we must now extract
the shortest path from S to T. As explained above, this can be done by following a chain
of adjacent cells with decreasing labels. For every cell on this path (except S), we put
the integer —3 into the corresponding floor entry; this allows us to draw the path in
the subsequent output. If no path was found (or if there is no target), the body of the
while statement in the following code fragment is (correctly) not executed at all.

// mark shortest path from source to target (if there is one)
int r = tr; int ¢ = tc; // start from target
while (floor[r][c] > 0) {

int d = floor[rllc]l - 1; // distance one less

floor[r]l[c]l = -3; // mark cell as being on shortest path
// go to some neighbor with distance d

if (floor[r-1][c] == d) --r;

else if (floor[r+1][c] == d) ++r;

else if (floor[r][c-1] == d) --c;

else ++c; // (floor[r][c+1] == d)

Finally, the output: we map the integer entries of floor back to characters, where
—3 becomes ’o’, our path symbol. Inserting ’\n’ at the right places, we obtain a copy
of the input floor, with the shortest path appearing in addition. We must also not forget
to delete the dynamically allocated arrays in the end.



2.6. ARRAYS AND POINTERS 151

// print floor with shortest path
for (int r=1; r<n+1; ++r) {
for (int c=1; c<m+1; ++c)

if (floor[r][c] == 0) std::cout << ’S7;
else if (r == tr && c == tc) std::cout << ’T’;
else if (floor[r]l[c] == -3) std::cout << ’0’;
else if (floor[r]l[c] == -2) std::cout << ’X’;
else std::cout << ’-7;

std::cout << "\n";

// delete dynamically allocated arrays
for (int r=0; r<n+2; ++r)

delete[] floorl[rl;
delete[] floor;

return 0;

In case of our initial example, the output looks like in Figure 16. Program 16 shows
the complete source code.

000000X - ——-—
oXXX-oX-----
00SX-000000-
---X---XXXo-
---X---X-o0-
---X---X-o--
---X---X-T--
_——————— X____

Figure 16: Output of Program 16 on the input of Figure 15

#include<iostream>

1
2
3 int main()

4 {

5 // read floor dimensions

6 int n; std::cin >> n; // number of rows

7 int m; std::cin >> m; // number of columns
8

9

// dynamically allocate twodimensional array of dimensions
10 // (n+2) = (m+2) to hold the floor plus extra walls around
11 int** floor = new int*[n+2];
12 for (int r=0; r<n+2; ++r)
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floor[r] = new int[m+2];
// target coordinates, set upon reading T’
int tr = 0;
0;

int tc =

// assign initial floor values from input:

// source: ’S > 0 (source reached in O steps)

// target: T => -1 (number of steps still unknown)
// wall: X => -2

// empty cell: °-° -> -1 (number of steps still unknown)

for (int r=1; r<n+1l; ++r)
for (int c=1; c<m+1; ++c) {
char entry = ’-7;
std::cin >> entry;

if (entry == ’8°) floorl[r][c]l = 0;

else if (entry == ’T’) floor[tr = rlltc = c] = -1;
else if (entry == ’X’) floor[r][c] = -2;

else if (entry == ’-’) floor[r][c] = -1;

// add surrounding walls
for (int r=0; r<n+2; ++r)

floor [r][0] = floor([r][m+1] = -2;
for (int c¢c=0; c<m+2; ++c)
floor [0][c] = floor[n+1][c] = -2;
// main loop: find and label cells reachable in i=1,2,... steps
for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<mn+1; ++r)
for (int c=1; c<m+1; ++c) {
if (floor[r][c] != -1) continue; // wall, or labeled before
// is any mneighbor reachable in 1-1 steps?
if (floor[r-1][c] == i-1 || floor[r+1][c] i-1 |
floor[r]l[c-1] == i-1 || floor[r][c+1] == i-1 ) {
floor[r]llc]l = i; // label cell with <

progress = true;
}
}
if (!progress) break;

}

// mark shortest path from source to target (if there is one)
int r = tr; int ¢ = tc; // start from target
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58 while (floor[r][c]l > 0) {

59 int d = floor[r]l[c] - 1; // distance one less
60 floor[rllc]l = -3; // mark cell as being on shortest path
61 // go to some neighbor with distance d

62 if (floor[r-1][c] == d) --r;

63 else if (floor([r+1][c] == d) ++r;

64 else if (floor[r][c-1] == d) --c;

65 else ++c; // (floor[r][c+1] == d)
66 }

67

68 // print floor with shortest path

69 for (int r=1; r<n+1; ++r) {

70 for (int c=1; c<m+1; ++c)

71 if (floor[r]l[c] == 0) std::cout << ’S7;
72 else if (r == tr && c == tc) std::cout << ’T’;
73 else if (floor[r][c] == -3) std::cout << ’0’;
74 else if (floor[r][c] == -2) std::cout << ’X’;
75 else std::cout << ’-7;
76 std::cout << "\n";

7 }

78

79 // delete dynamically allocated arrays

80 for (int r=0; r<n+2; ++r)

81 delete[] floor[r];

82 delete [] floor;

83

84 return O;

85

Program 16: progs/shortest_path.C

2.6.12 Beyond arrays and pointers

Arrays are very useful for many tasks and allow us to solve nontrivial problems like
finding shortest paths in the previous section. From a theoretical point of view, arrays
are in fact the only containers that we need.

On the other hand, there are two main drawbacks of arrays that we want to recapit-
ulate here.

Arrays have fixed length. Any array, even if it is dynamically allocated, has a fixed length.
In other words, we have to know before defining or dynamically allocating an array how
many elements we need to store in it. Often, this is unrealistic. For example, in some
application we might need to store a sequence of input numbers, but we don’t know in
advance how many numbers we will get. A typical “solution” is to dynamically allocate

154 CHAPTER 2. FOUNDATIONS

a very large array and just hope that the sequence fits in. The problems with this and
a better (but still cumbersome) solution are outlined in Exercise 65.

A “real” solution is possible in C++ through the use of wectors. These are con-
tainers from the standard library that combine the classical array functionality (and its
efficiency) with the possibility of growing (and shrinking) in length. Vectors can be im-
plemented on top of arrays, and they have something similar to the mechanism outlined
in Exercise 65 “built in”. Vectors also largely remove the necessity of working with
pointers. We will get to vectors (and their realization) later in this book.

Arrays are insecure. The usage of out-of-bound array indices is not detected in C++, and
the same holds for pointers to addresses where no program object lives. With some care,
you can write small programs that use arrays and pointers in a correct manner, but in
complex programs, this is not easy at all. Debugging facilities of modern compilers can
help, but even well-tested and frequently used large programs do not necessarily get it
right. In fact, some people (let’s call them attackers) are making a business of exploiting
programming errors related to arrays and pointers in order to create malicious software.

Suppose that the attacker knows that some program—think of an operating system
routine or a webserver—may (unintentionally) write input data beyond the bounds of
an array. Due to the von-Neumann architecture, the part of the main memory being
accidentally modified in this way may contain the actual program instructions. The
attacker may then be able to prepare an input to the program in such a way that the
program modifies itself to do whatever the attacker wants it to do. This modification
runs with the same access rights as the original one, and these might be administrator
rights in the worst case.

In this way, an attacker could “hijack” the computer that runs the program, and
subsequently misuse it for illegal activities like sending spam, or paralyzing web servers
by flooding them with requests.

For us that we are not (yet) professional programmers, the security aspect is less of a
concern here. More important is that programming errors due to improper use of arrays
and pointers can be very hard to find and often remain undetected until they suddenly
result in strange and seemingly inexplicable behavior of the program. Also here, using
vectors instead of arrays helps, since there are many potential errors related to arrays
and pointers that you simply cannot make with vectors.

Why arrays, after all? Now you may ask why we have introduced arrays and pointers at
all when there are more flexible and safer alternatives. Here are the three reasons.

1. Arrays and pointers are the simplest models of important standard library concepts
(container and iterator).

2. Unlike vectors, arrays can be introduced without the need to discuss syntactical
and semantical aspects of C++ functions and classes (that we simply don’t have
at our disposal at this point);
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3. In order to really understand later how standard library containers and iterators
are realized, it is necessary to know about arrays and pointers.

The take-home message here is this: it is important to get familiar with the concepts
behind arrays and pointers, but it is less important to be able to actually program with
arrays and pointers on a large scale.

2.6.13 Details

Command line arguments. In Program 15 for string matching, it is not very convenient
that the search string is fized. We then have to recompile the program every time we
want to search for another string.

A more flexible alternative is to pass the search string as a command line argument
that we provide upon calling the program.

The main function can access such command line arguments if we provide suitable
parameters. Here is how the first ten lines of Program 15 have to be changed in order
to make this work.

1 // Program: string_matching2.C

2 // find the first occurrence of a string (provided as command
3 // line argument) within the input text, and output texzt so far
4

5 #include<iostream>

6

7 int main (int argc, charx argv[])

8 {

9 if (arge < 2) {

10 // mno command line arguments (except program mname)

11 std::cout << "Usage: string_matching2 <string>\n";

12 return 1;

13 }

14

15 // search string: second command line argument

16 char*x s = argv[1];

The values of argc and and argv[] (which is an array of pointers each of which in turn
points to the first elements of a zero-terminated array of characters) are initialized by the
operating system when it calls the main function. We will explain function parameters in
detail later, here we will be satisfied with an example. Suppose that we call the program
like this (assuming a Unix-type system):

./string_matching2 bool

Then argc (which counts the number of command line arguments) gets initialized
with value 2. This count includes the program name itself ("string_matching2" in this
case), and any additional strings provided on the command line (just the single string
"bool" in this case). The 2 arrays argv[0] and argv[1] get initialized with the strings
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"string_matching2" and "bool" as described in Section 2.6.10 above. Consequently,
after its definition, the pointer variable s in the above piece of code points to the first
element of a zero-terminated array of characters that corresponds to the string "bool".
This gets us back to the situation in Program 15 after line 10, and the remainders of
both programs are identical.

2.6.14 Goals

Dispositional. At this point, you should ...
1) know what an array is, and what random access and iteration mean in the context
of arrays;
2) understand the pointer concept, and how to compute with addresses;
3) be aware that (and understand why) arrays and pointers must be used with care;

4) know that characters and arrays of characters can be used to perform basic text
processing tasks;

5) know that (multidimensional) arrays of variable length can be obtained by dynamic
memory allocation;

Operational. In particular, you should be able to ...

(G1) read, understand, and argue about simple programs involving arrays and pointers;

(G2) write programs that define array variables or dynamically allocate (multidimen-
sional) arrays;

(G3) write programs that read a sequence of data into a (dynamically allocated /
multidimensional) array;

(G4) write programs that perform simple data processing tasks by using random access
in (multidimensional) arrays as the major tool;

(G5) within programs, iterate over a (dynamically allocated / multidimensional) array
by using pointer arithmetic;

(G6) write programs that perform simple text processing tasks with arrays of charac-
ters;

2.6.15 Exercises

Exercise 55

a) What does the following program output, and why?
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#include<iostream>

int main()
{
int all = {5, 6, 2, 3, 1, 4, 0};
int* p = a;
do {
std::cout << *p << " ",
p = a + *p;
} while (p !'= a);

return 0;

b) More generally, suppose that in the previous program, a is initialized with
some sequence of n different numbers in {0,...,n—1} (we see this forn =7 in
the previous program). Prove that the program terminates in this case.

(c1)

Exercise 56 Assume that in some program, a is an array of underlying type int and
length n.

a) Given a variable i of type int with value 0 < i < n, how can you obtain a
pointer p to the element of indezx i in a? (Note: if i = n, this is asking for a
past-the-end pointer.)

b) Given a pointer p to some element in a, how can you obtain the index i of
this element? (Note: if p is a past-the-end pointer, the indez is defined as n.)

Write code fragments that compute p from i in a) and i from p in b). (G1)

Exercise 57 Let us call a natural number k-composite if and only if it is divisible by
ezactly k different prime numbers. For example, prime powers are 1-composite,
and 6 =2-3 as well as 20 =2-2-5 are 2-composite. Write a program k_composite.C
that reads mumbers n > 0 and k > 0 from the input and then outputs all k-
composite numbers in {2,...,.n — 1}. How many 7-composite numbers are there
for n=1,000,000? (G2)(G4)

Exercise 58 Write a program invert.C that inverts a 3 x 3 matriz A with real entries.
The program should read the mine matriz entries from the input, and then output
the inverse matriz A~ (or the information that the matriz A is not invertible). In
addition, the program should output the matriz AA~' in order to let the user check
whether the computation of the inverse was accurate (in the fully accurate case,
the latter product is the identity matriz).
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Hint: For the computation of the inverse, you can employ Cramer’s rule. Applied
to the computation of the inverse, it yields that A{ﬂ (the entry of A~ in row i and
columns j) is given by

Al = (—=1)¥ det(ATY)
W det(A) ’

where det(M) is the determinant of a square matriz M, and AY is the 2 x 2 malriz
obtained from A by deleting row j and column i.

To compute the determinant of a 3 x 3 matriz, you might want to use the well-
known Sarrus’ rule. (G2)(G3)(G4)

Exercise 59 Write a program read_array that reads a sequence of n integers from
standard input into an array. The number n is the first input, and then the program
ezpects you to input another n wvalues. After reading the n wvalues, the program
should output them in the same order. (If you can do this, you have proven that
you are no longer a complete novice, according to Stroustrup.) For example, on
input 5 4 3 6 1 2 the program should output 4 3 6 1 2. (G2)(G3)

Exercise 60 Emhance the program read_array.C from Ezercise 59 so that the result-
ing program sort_array.C sorts the array elements into ascending order before
outputting them. Your sorting algorithm does mot have to be particularly efficient,
the main thing here is that it works correctly. Test your program on some larger
inputs (preferably read from a file, after redirecting standard input). For ezample,
on input 5 4 3 6 1 2 the program should output 1 2 3 4 6. (G2)(G3)(G4)

Exercise 61 Enhance the program read_array.C from Ezercise 59 so that the resulting
program cycles.C interprets the input sequence of n integers as a permutation 7 of
{0,...,n—1}, and that it outputs the cycle decomposition of 7.

Some ezplanations are in order: a permutation 7 is a bijective mapping from

the set {0,...,n—1} to itself; therefore, the input sequence can be interpreted as the
sequence of values 1(0),...,m(n— 1) of a permutation  if and only if it contains
every number from {0,...,n— 1} ezactly once.

The program cycles.C should first check whether the inpul sequence satisfies
this condition, and if not, terminate with a corresponding message. If the input
indeed encodes a permutation T, the program should output the cycle decomposition

of m. A cycle in 7 is any sequence of the form ( Ny n, .-+ ny ) such that
= 7'[(11])) nz = 7'[(T12)Y o, Ny = ﬂ(nk,ﬂ, and ny = n[nk), and
e N is the smallest element among n,, ..., Ny.

Any cycle uniquely determines the m-values of all its elements; on the other hand,
every element appears in some cycle (which might be of the trivial form (n,), mean-
ing that m(n,) =n,). This implies that the permutation decomposes into a unique
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set of cycles. For example, the permutation 7 given by
n(0)=4, mn(1)=2, n(2)=3, n(3)=1, n(4) =0
decomposes into the two cycles (04 )and (123 ). (G2)(G3)(G4)

Exercise 62 Consider the string matching algorithm of Program 15. Prove that for
all m > 1,n > m, there ezists a search string s of length m and a text t of length n
on which the algorithm in Program 15 performs m(n—m+1) comparisons between
single characters. (G1)

Exercise 63 Consider the following program that defines and initializes a threedimen-
stonal array.

#include <iostream>

int main ()
{
int a[4][2]1[3] =
{ // the 4 elements of a:
{ // the 2 elements of al[0]:
{2, 4, 5}, // the three elements of al[0][0]
{4, 6, 7} // the three elements of a[0][1]
},
{ // the 2 elements of al1]:
{1, 5, 9}, // the three elements of al[1][0]
{4, 6, 1Y // the three elements of al[1][1]
1,
{ // the 2 elements of al2]:
{56, 9, 0}, // the three elements of al[2][0]
{1, 5, 3}y // the three elements of al[2][1]
},
{ // the 2 elements of al[3]:
{6, 7, 7}, // the three elements of a[3][0]
{7, 8, 5} // the three elements of al[3][1]
¥
}s;

return O;

Write a program threedim_array.C that enmhances this program by a (nested)
loop that iterates over the array a and ils subarrays to output all the 24 int values
that are stored in a and its subarrays. Do mot use random access to do this but
pointer arithmetic. (G5)
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Exercise 64 Write a program frequencies.C that reads a text from standard input
(like in Program 15) and outputs the frequencies of the letters in the text, where
we do not distinguish between lower and upper case letters. For this ezercise, you
may assume that the type char implements ASCII encoding. This means that all

characters have integer values in {0,1,...,127}. Moreover, in ASCII, the values of
the 26 upper case literals A’ up to °Z’ are consecutive numbers in {65,...,90}; for
the lower case literals *a’ up to ’z’, the value range is {97,...,122}. (G6)

Running this on the lyrics of Yesterday (The Beatles) for example should yield the
following output.

Frequencies: i: 27 of 520 : ;Z zi 2;8
a: 45 of 520 j: 0 of 520 ‘ 31 of 520
b: 5 of 520 k: 3 of 520 u 9 of 520
c: 5 of 520 1: 20 of 520 v 6 of 590
d: 28 of 520 m: 10 of 520 v 19 of 520
e: 65 of 520 n: 30 of 520 X 0 of 520
f: 4 of 520 o: 43 of 520 v 34 of 520
g: 13 of 520 p: 4 of 520 Z: 0 of 520
h: 27 of 520 q: 0 of 520 Other: 37 of 520

2.6.16 Challenges

Exercise 65 The fact that an array has fized length is often inconvenient. For exam-
ple, in Ezercise 59 and in Ezercise 60, the number of elements to be read into the
array had to be provided as the first input wn order for the program to be able to
dynamically allocate an array of the appropriate length. But in practice, the length
of the input sequence s often not known a priori.

We would therefore like to write a program that reads a sequence of integers
from standard input into an array, where the length of the sequence is not known
beforehand (and not part of the input)—the program should simply read one number
after another until the stream becomes empty.

One possible strategy is to dynamically allocate an array of large length, big
enough to store any possible input sequence. But if the sequence is short, this is a
huge waste of memory, and if the sequence is very long, the array might still not
be large enough.

a) Write a program read_array2.C that reads a sequence of integers of unknown
length wnto an array, and then outputs the sequence. The program should
satisfy the following two properties.

(i) The amount of dynamically allocated memory in use by the program
should at any time be proportional to the number of sequence elements that
have been read so far. To be concrete: there must be a positive constant a
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such that no more than ak cells of dynamically allocated memory are in
use when k elements have been read, k > 1. We refer to this property as
space efficiency. It ensures that even very long sequences can be read (up
to the applicable memory limits), but that short sequences consume only
little memory.

(it) The number of assignments (of values to array elements) performed so
far should at any time be proportional to the number of sequence elements
that have been read so far, with the same meaning of proportionalily as
above. We refer to this property as time efficiency. It ensures that the pro-
gram is only by a constant factor slower than the program read_array.C
that knows the sequence length in advance.

b) Determine the constants of proportionality a for properties (i) and (i) of your
program.

Exercise 66 For larger floors, Program 16 can become quite inefficient, since every
step i ezamines all cells of the floor in order to find the (possibly very few) ones
that have to be labeled with i in that step. A better solution would be to examine
only the neighbors of the cells that are already labeled with i — 1, since only these
are candidates for getting label 1.

Write a program shortest_path_fast.C that realizes this idea, and measure the
performance gain on some larger floors of your choice.

Exercise 67 The XBM file format is a format for storing monochrome (black & white)
images. The format is somewhat outdated, but many browsers (Internet Ezplorer
is a notable exception) can still display images in XBM format.
An XBM tmage file for an image named test might look like this (taken from
Wikipedia’s XBM page).
#define test_width 16
#define test_height 7
static char test_bits[] = {
0x13, 0x00, 0x15, 0x00, 0x93, Oxcd, 0x55,
Oxab, 0x93, Oxcb, 0x00, 0x80, 0x00, 0x60};

As you can guess from this, XBM files are designed to be integrated into C and
C++ source code which makes it easy to process them (there is no need to read in
the data; simply include the file from the C++ program that needs to process the
image). In our ezample, test_width and test_height denote the width and height
of the image in pizels. Formally, these names are macros, but in the program they
can be used like constant ezpressiomns. test_bits is an array of characters that
encodes the colors of the 16 x 7 pizels in the image. Every hexadecimal literal of
the form 0Oxd;d, encodes eight pizels, where the order is row by row. In our case,
0x13 and 0x00 encode the 16 pizels of the first row, while 0x15 and 0x00 are for the
second row, etc.
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Here is how a two-digit hezadecimal literal encodes the colors of eight consecutive

pizels within a row.?* BEuvery hezadecimal digit d; is from the set {0,...,9,q,...,f}

where a up to f stand for 10,...,15. The actual number encoded by a hexadecimal

literal is 16d, + d, € {0,...,255}.2" For example, 0x13 has value 1-15+3 =19.
Now, any number in {0,...,255} has a binary representation with 8 bits. 19,

for example, has binary representation 00010011, The pizel colors are obtained by
reading this backwards, and interpreting 1 as black and 0 as white. Thus, the first
etght pizels in row 1 of the test tmage are black, black, white, white, black, white,
white, white. The complete test image looks like this:

Elarg

Write a program xbm.C that #includes an XBM file of your choice (you may search
the web to find suitable XBM files), and that outputs an XBM file for the same image,
rotated by 90 degrees. The program may write the resulting file to standard output.
In case of the test image, the resulting XBM file and the resulting rotated image are
as follows.

#define rotated_width 7

#define rotated_height 16

static char rotated_bits[] = {
0x3c, 0x54, 0x48, 0x00,
0x04, Oxlc, 0x00, Oxlc,
0x14, 0x08, 0x00, Ox1if,
0x00, 0x0a, O0x15, Ox1f};

Elarg

Note that we now have 16 instead of 14 hexadecimal literals. This is due to the
fact that each of the 16 rows needs one literal for its 7 pizels, where the leading bits
of the binary representations are being ignored.

You may extend your program to perform other kinds of image processing tasks
of your choice. Ezamples include color inversion (replace black with white, and
vice versa), computing a mirror image, scaling the image (so that it occupies less
or more pizels), etc.

261f the width is not a multiple of 8, the superfluous color values from the last hexadecimal literal of
each row are being ignored.

27If the type char has value range {—128,..., 127}, the silent assumption is that a literal value « larger
than 127 converts to & — 256, which has the same representation under two’s complement.



